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Abstract. We design an effective shape prior embedded human silhou-
ettes extraction algorithm. Human silhouette extraction is found chal-
lenging because of articulated structures, pose variations, and back-
ground clutters. Many segmentation algorithms, including the Min-Cut
algorithm, meet difficulties in human silhouette extraction. We aim at im-
proving the performance of the Min-Cut algorithm by embedding shape
prior knowledge. Unfortunately, seeking shape priors automatically is
not trivial especially for human silhouettes. In this work, we present
a shape sequence matching method that searches for the best path in
spatial-temporal domain. The path contains shape priors of human sil-
houettes that can improve the segmentation. Matching shape sequences
in spatial-temporal domain is advantageous over finding shape priors by
matching shape templates with a single likelihood frame because errors
can be avoided by searching for the global optimization in the domain.
However, the matching in spatial-temporal domain is computationally
intensive, which makes many shape matching methods impractical. We
propose a novel shape matching approach that has low computational
complexity independent of the number of shape templates. In addition,
we investigate on how to make use of shape priors in a more adequate way.
Embedding shape priors into the Min-Cut algorithm based on distances
from shape templates is lacking because Euclidean distances cannot rep-
resent shape knowledge in a fully appropriate way. We embed distance
and orientation information of shape priors simultaneously into the Min-
Cut algorithm. Experimental results demonstrate that our algorithm is
efficient and practical. Compared with previous works, our silhouettes
extraction system produces better segmentation results.

1 Introduction

Shape matching has been found useful in object recognition. In specific, shape
matching based on silhouette information has been proved effective in human
gait recognition. Gait recognition overcomes a few problems in an elegant manner
that other people identification methods find difficult to handle. For example, a
gait recognition system can identify a person from a distance. It is possible to
recognize persons using silhouettes extracted from low-resolution images.



Reliable and accurate silhouettes are crucial for gait recognition. A gait recog-
nition system tends to have poor performance when extracted silhouettes deviate
from the real shapes in image sequences. Most gait recognition algorithms assume
that silhouette information has been extracted precisely. However, silhouette ex-
traction is a very challenging task especially when image sequences are captured
by a moving camera, or the background contains clutters. In fact, silhouette
extraction is not only important for gait recognition, but also can be used in hu-
man pose analysis and other applications. Human tracking and segmentation are
challenging because of articulated structures, pose variations, and background
clutters. Although some human tracking algorithm can provide foreground like-
lihood images [1], it is too difficult to calculate precise human silhouettes based
on these likelihood images using simple image morphing techniques. As other
segmentation methods, the Min-Cut algorithm also meets difficulties in human
silhouette extraction. Markov Random Fields, which are the foundation of the
Min-Cut algorithm, seldom present realistic shape priors. Therefore, the Min-
Cut algorithm gives poor performance in human silhouette extraction, especially
in cluttered backgrounds.

Shape priors play an important role in improving the performance of the Min-
Cut algorithm. We develop a silhouette extraction algorithm based on the stan-
dard Min-Cut algorithm. Although shape priors have been incorporated in the
Min-Cut algorithm in previous works [2], it is not trivial to compute shape priors
automatically especially for human silhouettes. The likelihood images given by
tracking algorithms are helpful in computing shape priors. Unfortunately, these
likelihood images contain many errors. Matching a single likelihood image with
a set of silhouettes templates is not reliable due to these errors. Matching shape
sequences in spatial-temporal domain is advantageous over finding shape priors
by matching shape templates with a single likelihood frame because errors can
be avoided by searching for the global optimization in the domain. However, the
matching in spatial-temporal domain is computationally intensive, which makes
many shape matching methods impractical. We propose a novel shape matching
approach that has low computational complexity independent of the number of
shape templates.

Incorporating shape prior knowledge alleviates the problems in silhouette ex-
traction. The Min-Cut algorithm allows for a straightforward incorporation of
prior knowledge into its formulation. An important problem in employing shape
priors is how to apply shape prior knowledge in an appropriate manner. Embed-
ding shape priors into the Min-Cut algorithm based on distances [2] from shape
templates is lacking because Euclidean distances cannot represent shape knowl-
edge in a fully appropriate way. We embed distance and orientation information
of shape priors simultaneously into the Min-Cut algorithm.

The rest of the paper is arranged as follows. Following the literature review,
We describe a novel shape matching method and its application in optimal path
searching in Section 3. We incorporate shape priors into the Min-Cut algorithm
in Section 4. Both distance and orientation information of shape priors are em-



bedded within the Min-Cut algorithm. Experimental results for image sequences
are presented in Section 5. Section 6 concludes this work.

2 Previous Work

Human silhouette extraction is found challenging because of articulated struc-
tures, pose variations, and background clutters. Segmentation methods based
solely on low-level information often provide poor performance in these difficult
scenarios. Many segmentation algorithms meet difficulties in human silhouette
extraction. The Min-Cut algorithm [3], which has achieved great success in in-
teractive segmentation, faces problem in silhouette extraction.

The evident power of shape priors as an additional cue has been noticed
by many researchers. Freedman and Zhang [2] define the coherence part of the
Min-Cut algorithm by considering the shape distance transform results. In their
work, shape priors are given manually, which is tedious for segmentation in
video sequence. It is desirable to computer shape priors automatically for human
silhouette extraction. Wang et al. [1] proposed a shape prior seeking algorithm
by searching for the best path in spatio-temporal domain. The major drawback
of their work is the heavy computational costs in shape matching, which makes
their algorithm not practical for real applications. Although there is an effort in
accelerating the shape matching process [4], the performance is still not efficient
especially when the number of shape templates is large.

While pedestrian model representations have been employed for refining sil-
houettes in previous works [5, 6], they all assume that an foreground likelihood
images can be obtained by background subtraction. In addition, these works do
not address the shape matching problem, which is crucial for the applicability
of silhouette extraction.

In visual tracking literature, temporal coherency was employed in particle
filtering. Rathi et al. [7] formulated a particle filtering algorithm in a geometric
active contour framework in which temporal coherency and curve topology are
handled. In addition, shape and appearance information were considered in a
unified metric framework by Toyama and Blake [8]. The use of exemplars allevi-
ates the difficulty of constructing complex motion and shape models. Although
these algorithms do improve the performance of tracking, few of them deal with
silhouette extraction.

3 Computing Shape Priors

We adopt an adaptive mean-shift tracking approach [9, 10]. The adaptive tracker
provides bounding boxes and Foreground Likelihood Images (FLI). We match
FLI sequence with silhouette templates in the standard gait models. A Standard
Gait Model (SGM) is constructed for the matching. Tanimoto distance [11] is
taken as the similarity measure between FLIs and silhouette templates. Match-
ing shape sequences in spatial-temporal domain [1] is advantageous over finding
shape priors by matching shape templates with a single likelihood frame because



errors can be avoided by searching for the global optimization in the domain.
However, the matching in spatial-temporal domain is computationally intensive,
which makes many shape matching methods impractical. We will introduce an
efficient shape matching approach that has low computational complexity inde-
pendent of the number of shape templates.

3.1 Matching Measure

FLIs generated by the tracker should be normalized to have the same size as the
silhouette templates. An FLI in the nth frame is denoted by f(n). The center
and the height of a human region’s bounding box are denoted by (cx, cy) and h,
respectively. Registration and scaling based on the bounding box are processed
in the same way as the SGM, thus producing the normalized FLI fN (n; cx, cy, h)
in the nth frame.

Tanimoto distance [11] is exploited as the measure between the FLI fN and
SGM g :

DT (fN , g) = 1 −
∑

(x,y) min{fN (x, y), g(x, y)}
∑

(x,y) max{fN (x, y), g(x, y)} , (1)

where fN (x, y) and g(x, y) are the likelihood and silhouette values, respectively,
at (x, y) . The Tanimoto distance between an FLI and SGM is 1 if they have
identical shapes, and 0 if there is no overlap between them.
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Fig. 1. The efficient Tanimoto distance method.

3.2 O(1) Tanimoto Distance Computation

The matching between foreground likelihood images and silhouette templates us-
ing Tanimoto distance is computationally expensive because every pixel in every
image has to be calculated individually. It takes more than 120 seconds when 30
silhouette templates are employed in the sequence matching. (The algorithm is
run on a 1.6GHz laptop). This expensive Tanimoto distance computation makes



the proposed approach impractical. The problem is exacerbated if we wish to
include more shape variations by adding silhouette template images.

We present a novel distance calculation method whose matching complexity
is O(1). The calculation of the minimum and maximum in Eq. 1 is expensive if
they are calculated individually. We noticed, however, that the silhouette tem-
plate and likelihood images can be quantized in a limited range ([0, 255] in this
work) without any negative effect on the matching results. Because the silhou-
ette template images given in the initialization have been aligned, we sort the
values at each position in the template images. The phase information of these
templates is kept in the sorted results. Based on the sorted results, a direct ac-
cess table is built for each position of the silhouette template images. Each table
has two splitting phase IDs corresponding to the calculation of the maximum
and minimum in Eq. 1.

As shown in Figure 1, to calculate the minimum and maximum in Eq. 1,
we do not need to compare the input likelihood value with all the values in the
silhouette template images. To make the illustration clear, we use 30 phases here.
In the initialization, we sort the values at each position in the template images.
Then we build one direct access table for each value in the range [0, 255]. Each
table contains two splitting phase IDs: the maximum phase ID pS

max and the
minimum phase ID pS

min. For a given input likelihood value, the direct access
table is found directly. Then the maximums and minimums can be assigned
based on the splitting phase IDs corresponding to the input likelihood value.
The value in a phase in the sorted results is assigned as the minimum, when its
phase ID is equal to or smaller than the minimum splitting phase ID pS

min, or
as the maximum, when its phase ID is equal to or greater than the maximum
splitting phase ID. For instance, if the input likelihood value is 0, all the values in
the template images are assigned as maximums and the input likelihood value is
always assigned as the minimum. The computational complexity of the matching
process is O(1). In other words, the matching is independent to the number of
silhouette template images. This method is particularly important when many
templates are necessary to cover large variations in shape. The template values
are sorted only once during the initialization.

Tanimoto distance measures the overlapping regions of two input images. Its
computation time is further reduced by reusing the calculated overlapping re-
gions [12]. Tanimoto distance can be formulated as DT (fN , g) = G+F−C

C , where
F =

∑
(x,y) fN (x, y), G =

∑
(x,y) g(x, y), and C(fN , g) =

∑
(x,y) min{fN (x, y), g(x, y)}.

Based on this formulation, G (sum of gait template values) is calculated only once
during the initialization. For each input foreground likelihood image sequence, F
is also calculated only once. C(fN , g) is calculated based on the efficient method.

Using the method described above, it takes around 0.6 seconds to calculate
distances between an input foreground likelihood sequence and all templates
(including shifting and scaling) on the 1.6GHz laptop. Further computational
cost reduction is expected when the number of shape templates becomes larger.
In addition, the proposed distance calculation method can be used in other
applications where silhouette template matching is necessary [12].



4 Embedding Shape Priors in Min-Cut Segmentation

Let L = {1 . . . K} be a set of labels. Let G = (V, E) be a graph with E ⊆ V ×V.
Segmentation is formulated in terms of energy minimization in the Min-Cut
algorithm [13]. We embed shape priors into the algorithm.

4.1 Embedding Shape Priors

Shape priors can be embedded in the Min-Cut algorithm by adding an energy
term [2] [14]:

E(A) = Esmoothness(A) + Edata(A) + Eshape(A). (2)

The Min-Cut algorithm with shape priors includes shape fitness, smoothness and
initial labeling. The energy function Eshape is penalized if the segmented contour
deviates from the boundary of the silhouette. Shape priors are represented by a
distance transform result.

We found that the method in [2] is deficient: the embedded shape priors
need to be very accurate, otherwise the distance transform can misguide the
segmentation. In contrast, we introduce orientation information in the shape
priors to encourage smoothness of the segmentation. It has been found that
the statistics of steered filters for human limbs are different from those of other
natural scenes [15]. In this work, we learn a vocabulary that includes position and
gradient orientations in human silhouettes. We calculate gradient orientations
and normalized positions (in [0, 1]) in 400 segmented people silhouette images
and detect edges in the silhouette templates using Canny edge detector. Then
we calculate gradient orientations and normalized coordinates on the edges. We
apply K-Means to form an initial vocabulary. An EM algorithm is adopted to
get the final vocabulary. We compute the mean and covariance matrix for each
word. The vocabulary has 10 words finally, allowing edges belonging to a same
word formulate as an oriented template. Thus 10 oriented templates are gotten
for every template image. Then Euclidean distance transform is applied to these
oriented templates.

To improve the first term in Eq. 2, based on the distance transform results of
the oriented templates, we calculate the minimum distance in corresponding to a
pixel in the input image. If the minimum distance is greater than the threshold
dDT

min, the pixel is set as background. This method is effective in dealing with
inaccurate shape priors. In contrast, the shape priors used in [2, 1, 14] have to
be very accurate, otherwise they can misguide the segmentation.

We also found that probabilities decrease too quickly near a contour. We
decrease the distance values obtained from the distance transform by applying
a local search. We then extract edges in the input images. The distance is kept
as is if there are edges near the shape prior. Otherwise the distance values are
multiplied by a constant factor cedge. (The factor is set to 0.8 in this work).
The cost function of shape priors is well described in the transformed image.
The shape prior energy is written as Eshape =

∑
(pq)∈N :Ap �=Aq

ψmin(p)+ψmin(q)
2 ,

where ψmin is the minimum distance on the transformed image.



�����
 ������� ������	 �����


���

���

���

�������

Fig. 2. Tracking and segmentation results for the indoor sequence. (a) Input images.
(b) Initial bounding boxes (in red) generated by the tracker, optimal bounding boxes
(in green) and gait models (phase) obtained using optimal path searching. (c) Segmen-
tation results by embedding the shape priors in the Min-Cut algorithm.

5 Experimental Results

We tested the proposed algorithm on 8 sequences with tracking and segmenta-
tion ground truths. The size of all images in these sequences is 360 × 240 pixels.
We show the results for two sequences in detail. Performance is evaluated with
respect to refinement of bounding boxes and phase estimation and the improve-
ment in segmentation. The Quantitative evaluation of other sequences is given
in 5.3.

5.1 Refinement of Bounding Boxes and Phase Estimation

The results for the two sequences are shown in Figures 2 and 3, respectively.
The initial bounding boxes produced by the tracker are not well aligned with
the people regions and the initial foreground likelihoods are low for some parts.

Based on the optimal path searching results, the tracking bounding boxes are
shifted to better positions. The bounding boxes are not accurately aligned with
the person. The vertical centers in the initial bounding boxes deviate from their
correct positions. The positions are adjusted downwards based on the optimal
path searching results. The horizontal centers of the initial bounding boxes are
relatively more accurate. They need to be shifted less frequently than the vertical
centers.

The selected silhouette templates provided by the searching results are shown
in Figure 2(b). The gait phases corresponding to the walking person are correct.
The shape priors are incorporated in the Min-Cut algorithm giving the segmen-
tation results shown in Figure 2(c).

Next we evaluate the smoothness of the walking phase transfer in Figure 4.
The phases estimated with and without using shape sequence matching are com-
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Fig. 3. Tracking and segmentation results for the outdoor sequence. (a) Input images.
(b) Initial bounding boxes (in red) generated by the tracker, optimal bounding boxes
(in green) and gait models (phase) calculated by the optimal path searching using
shape sequence matching. (c) Segmentation results by embedding the shape priors in
the Min-Cut algorithm.

pared. The estimation results without using shape sequence mathcing are ob-
tained by matching an input likelihood image with all the silhouette templates.
The phases estimated using shape sequence matching are much more accurate
than those without shape sequence matching. This demonstrates the importance
of shape sequence matching in optimal path searching. The phase estimation also
verifies the necessity of searching in a spatiotemporal space instead of in a single
frame. When the view changes, the phase estimation result is not as accurate as
the side view. However, it is still much better than the estimation obtained from
single image matching.
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Fig. 4. Phase transition estimation for the sequence in Figure 3.



5.2 Segmentation Results

The segmentation ground truths of these sequences are obtained by labeling the
images manually. Each pixel is labeled as background, foreground, or ambiguous.
The ambiguous label is used to mark mixed pixels along the boundaries between
foreground and background. We measure the error rate as a percentage of mis-
segmented pixels, ignoring ambiguous pixels.

Test seqeunces 3 4 5

No Prior 0.18 0.30 0.32
Using Prior 0.092 0.24 0.23

Test seqeunces 6 7 8

No Prior 0.23 0.36 0.4
Using Prior 0.15 0.22 0.31

Table 1. Segmentation errors for eight of the test sequences.

5.3 Quantitative evaluation

Segmentation results using shape priors are shown for the indoor sequence (Fig-
ure 2) and the outdoor sequence ( Figure 3). A quantitative evaluation of the
segmentation results with and without shape priors is shown in Figure ??. The
segmentation results with shape priors embedded are compared with those with-
out shape priors. The incorporation of shape priors improves the performance of
the segmentation. Compared with the indoor sequence, the use of shape priors is
more helpful in the outdoor sequence. Thus shape priors play a more important
role in the challenging outdoor sequence.

Table 1 shows segmentation errors with respect to ground truth for six of our
test sequences. Among them, sequence 3, 4, and 5 are indoor sequences, and 6,
7, 8 are outdoor sequences. The segmentation using shape priors has lower error
rate in these sequences.

6 Conclusions

We find optimal paths for an input likelihood sequence by matching it with
silhouette templates. The novel efficient shape matching method makes the pro-
posed approach practical for real applications. The shape sequence matching
provides shape priors for silhouette extraction. The proposed prior embedding
method is effective. The segmentation performance is also improved based on
shape constraints.
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