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ABSTRACT

We present a patch-based tracking algorithm in which both
appearance and spatial information are taken into account
for target localization. We decompose a target into several
patches based on appearance similarity and spatial distribu-
tion. Each patch has its distinctive appearance and spatial
distribution. Appearance information is described by kernels
which are non-parametric; while spatial information is repre-
sented by spatial Gaussians. The overall motion is estimated
by mean shift algorithm. The motion is refined based on
the likelihood images computed using pixel classification.
The proposed tracker provides better position and likelihood
images.

Index Terms— Visual tracking, patch-based, feature se-
lection, spatial and appearance information.

1. INTRODUCTION AND RELATED WORK

Visual tracking is still an unsolved problem after the inten-
sive investigation over the years. Adaptive tracking [5] can
improve the performance of a tracker by adaptively select-
ing features that make the target discriminative against its
background. Unfortunately, adaptive tracking may fail when
model drifts [5, 8]. Pixels in the background can be mistak-
enly labeled as foreground and incorporated into the target
model. Thus the target representation deviates from the true
appearance. In this work, we aims at improving pixel clas-
sification and target localization by explicitly considering ap-
pearance and spatial information.

Representation and localization are the main issues to be
tackled in designing a robust tracker. An ideal target represen-
tation can capture the essence of the target that is invariant to
certain changes and discriminative enough to distinguish the
target out. Moreover, it should be flexible enough to accom-
modate object variability due to different lighting conditions
or viewpoints. Histograms and other non-parametric forms
such as kernel density estimation have been widely used in
visual tracking. The robustness of histograms to change in
pose and shape has been employed in various tracking al-
gorithms. The advantage of this method is achieved by dis-
carding all spatial information. Spatial information of image

patches, however, is important for discriminating the target
and its background in many cases.

In order to make use of appearance and spatial informa-
tion, we decompose a target into several patches based on
the appearance similarity and spatial distribution. Both ap-
pearance and spatial information are employed in the pro-
posed tracker: appearance information is described by kernels
which are non-parametric; spatial information is represented
by spatial Gaussians. The overall motion is estimated by the
mean shift algorithm. Likelihood images are computed based
on pixel classification using the patch-based representation.
The motion can be refined based on the likelihood images.

Multi-cue plays a powerful role in human visual percep-
tion. While using multiple cues in detection or tracking, two
sets of features should be complementary. Although the color
cue is very important in detection and tracking, other types
of cues such as shape can be very helpful especially when
they are used jointly with colors. In this work, we select the
best features from the shape and color cues. The shape cue is
represented by gradient orientation histograms and the color
cue is described by color histograms. We calculate color his-
tograms in the RGB, the HSV spaces and the normalized rg
space. The discriminative features are selected by evaluating
the discriminative ability of each feature.

1.1. Related Work

Spatial information has been addressed in previous works
with different representations. Birchfield and Rangarajan [3]
propose a spatiogram-based tracking algorithm to make use
of spatial information. They model a target using a histogram
in which each bin is spatially weighted by the mean and co-
variance of the location of the pixels that contribute to that
bin. The experimental results in [3] is not satisfying because
the spatial information is not well described. Wang et al. [12]
model the appearance of objects based on mixture of Gaus-
sians in a joint spatial-color space. To initialize the tracking,
they adopt EM approach which is time consuming. The nor-
malized color rg and intensity are employed to describe the
appearance of the target. Although rg are robust to illumina-
tion changes, they are not discriminative in many cases. In
contrast, we use a feature selection procedure to find those
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features discriminative against the background.
The importance of feature selection has been noticed by

Collins et al. [5]. Yin and Collins [15] extend [5] and pro-
pose a spatial divide and conquer approach which arbitrarily
subdivides foreground and background into smaller regions.
Different features are selected based on the separability be-
tween the target and one of its sub-background regions. One
of the drawbacks of their work is the assumption that a target
can be represented by a uni-modal distribution.

Our work also relates to Avidan’s work [1] in which an
ensemble of simple weak classifiers is used for the binary
foreground/background appearance model maintenance and
tracking. Each weak classifier is trained online from a spe-
cific frame, and the ensemble is collected from a predefined
range of recent frames.

The paper is organized as follows. In Section 2, we intro-
duce how to decompose and represent a target into patches.
Section 3 describes feature selection for appearance model-
ing. We proposed the method for target localization and like-
lihood ratio image re-computation in Section 4. The perfor-
mance of the proposed method is evaluated in Section 5. This
paper is concluded in Section 6.

2. TARGET DECOMPOSITION AND
REPRESENTATION

2.1. Decomposition

The initialization can be done by combining a detection al-
gorithm and the GrabCut [10]. The detection algorithm pro-
vides a bounding box for the target. The GrabCut algorithm
segments the target out using an iterative procedure [10].

The segmented target is represented by a collection of
patches. These patches are generated using the k-means al-
gorithm. The k-means algorithm is simple but effective in
clustering different distributions. We have tried different
color spaces such as RGB, HSV, rg in the k-mean clustering.
Since the clustering based on color information is not satis-
fying enough, spatial information is also embedded into the
k-means. The best results are achieved using HS-XY. The
target decomposition results are illustrated in Fig. 1.

The number of patches has to be defined before the de-
composition when using k-means. However, different targets
might have different numbers of patches. In this work, the
problem is dealt with by giving a relatively large number of
patches in the very beginning (e.g., 8). The patches computed
by running the k-means are refined based on their sizes. The
pixels in these small patches (less than 5% of the target) are
assigned to large patches according to their distance the cen-
ters of these patches.

The results of target decomposition are a collection of
patches with appearance similarity and spatial adherence. We
use G to denote a collection of patches sampled from the tar-
get region; and g denote a patch in the collection. The target
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Fig. 1. (a) The input image. (b) Target segmentation using
GrabCut [10]. (c) K-means-based target descomposition us-
ing RGB; (d) HSV; and (e) HS-XY. (f) Parametric represen-
tation of spatial information.

is described by its appearance which is a kernel [6, 13] in this
work. In addition, each part is described separately with ap-
pearance and spatial information.

2.2. Representation

The target and its patches are described by their appearance
and spatial information. Appearance information is described
by kernels [6]. Spatial information in each part is represented
by a spatial Gaussian. The spatial Gaussian of patch g is com-
posed of its average μg and covariance matrix

∑
g . The spa-

tial information of each part is also shown in Fig. 1.

3. FEATURE SELECTION

Feature selection finds the best subset from the features avail-
able for tracking or recognition. It plays an important role
in tracking [5]. A feature can be selected or discarded based
upon some predefined criteria such as principal component
analysis [7], class separability measure [9], or variable rank-
ing [5]. In this work, variance ratio is used as the discrimina-
tive ability measure.

3.1. Computing Likelihood Ratios

Variance ratio [5] measures the separability of a feature based
on likelihood ratios. Likelihood ratios map raw feature values
nonlinearly into a new feature space. Those values appearing
more often on the target are projected to positive values; and
values appearing more frequently on the background are pro-
jected to negative values. Log-likelihood ratios can be com-
puted using the histograms of foreground and background
with respect to a given feature. The frequency of the pixels

appeared in a histogram bin is calculated as ζ
(bin)
F = p

(bin)
F

nF
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and ζ
(bin)
B = p

(bin)
B

nB
, where nF is the pixel number of the tar-

get region and nB the pixel number of the background.
The log-likelihood ratio for a feature value i is given by

L(bin) = max(−1, min(1, log
max(ζ(bin)

F , δL)

max(ζ(bin)
B , δL)

)), (1)

where δL is a very small number.

3.2. Selecting Discriminative Features

The variance ratio of the likelihood function is defined as [5]:

νg =
var(B ∪ F )

var(F ) + var(B)
=

var(L; (pF + pB)/2)
var(L; pF ) + var(L; pB)

. (2)

We evaluate the discriminative ability of each feature by
calculating the variance ratio. In the candidate feature set, the
color cue includes 7 different features: color histograms of
R, G, B, H, S, r, and g; and the shape cue includes gradient
orientation histogram. These features are ranked according
to the discriminative ability by comparing the variance ratios.
The feature with the maximum variance ratio is taken as the
most discriminative feature.

4. TARGET LOCALIZATION AND LIKELIHOOD
RATIO IMAGE COMPUTATION

The global motion is estimated using the mean shift algo-
rithm. The mean shift algorithm is an efficient peak mode
seeking method which can approach the peak mode in adap-
tive steps. The efficiency is employed to estimate the global
motion of a target. The global motion estimation is similar
to that in [6]. However, we adopt the idea of [14] in which
discriminative features are selected from multiple cues. Al-
though mean shift tracking is efficient, it does not provide
good localization results in many cases (Fig. 2). We try to
classify pixels in the bounding box into foreground and back-
ground using the appearance and spatial information of each
patch. The probabilities that a pixel belongs to foreground or
background are combined together to make a better likelihood
ratio image. We compute the location of the target based on
the refined likelihood image, which is re-localization of the
target.

4.1. Pixel Classification

We use superscripts F and B to denote foreground and back-
ground; A and S denote appearance and spatial information
respectively. The pixel classification is formulated following
the Bayesian approach. rg

x is the likelihood ratio of a pixel at
x in patch g, it is computed by:

rg
x =

pg
x(F |S,A)

pg
x(B|S,A)

(3)

It is difficult to compute an exact solution to Eq. 3. How-
ever, it can be approximated as:

rg
x ≈ pg

x(S,A|θF )pg
x(F )

pg
x(S,A|θB)pg

x(B)
, (4)

pg
x(S,A|θB) = pg

x(A|S, θ)pg
x (S|θ)pg

x(θ)), (5)

where θF and θB are parameters of the foreground and back-
ground.

The probability resulted from appearance distribution is
computed using histogram back-projection method [11, 14].
The probability resulted from spatial distribution is computed
as:

pg
x(S|θ) =

exp(− 1
2 (x − μg)T (ΣS

g )−1(x − μg))

2π|ΣS
g | 12

. (6)

We computed likelihood images for each patch in the
patch collection. These likelihood images are combined to-
gether to obtain the foreground likelihood image.

4.2. Merging Likelihood Ratios

Each patch has been described by different discriminative fea-
tures. These features are discriminative in certain areas that
are described by the spatial Gaussians. The likelihood ratios
obtained in the previous subsection have different contribu-
tions according to the discriminative abilities. The merging
of multiple likelihood ratio images considers these discrimi-
native abilities. It is computed using:

r(x) =
∑

νgr
g(x)pg

x (7)

where νg is the variance ration score of patch g; pg
x is com-

puted using Eq. 6.

4.3. Target Re-localization

The merged likelihood ratio image is better than that provided
by the global mean shift. We estimate the location and bound-
ing box of the target based on the merged likelihood ratio
image. The re-localization can give a better location of the
target. In practice, this is achieved by running another mean
shift on the merged likelihood ratio image [4].

5. EXPERIMENTAL RESULTS

The tracking algorithm was tested on image sequences with
ground truth. The testing results of two sequences are shown
here due to the space limitation. Both of them were captured
by moving cameras. The images in these sequences have a
size of 360 × 240 pixels. The low resolution of the images
makes the likelihood images computation difficult. Other fac-
tors also contribute to the difficulty such as the articulated tar-
get structures, the deformable property of the targets and the
dynamic backgrounds.

1566

Authorized licensed use limited to: OSAKA UNIVERSITY. Downloaded on June 08,2010 at 02:10:03 UTC from IEEE Xplore.  Restrictions apply. 




��


��

Fig. 2. The two sequences used in the experiment. The im-
ages in the first column are two frames in the input sequences.
The second column shows the likelihood ratio images com-
puted also using the global description of the target. The
bounding boxes in the second column are estimated using
mean shift with global description. The third column shows
the merged likelihood ratio images and the bounding boxes
given by re-localization.

The two sequences used in the experiments are shown in
Fig. 2(a) and Fig. 2(b) respectively. In Fig. 2, the likelihood
ratio images computed using the global description of the tar-
get are illustrated in the middle column. In Fig. 2(a), some
pixels in the background have high probability of foreground.
In Fig. 2(b), the upper body of the target is well described
by the likelihood ratio image due to the distinctiveness of
its color. Other parts of the target are not well reflected in
the likelihood ratio image. The bounding boxes deviate away
from the locations of the targets. We compute likelihood ratio
images for each patch using their appearance and spatial in-
formation. Then these likelihood ratios are merged based on
their distinctiveness. The merged likelihood ratio image are
shown in the right column in Fig. 2. We shift the bounding
box to a new position based on the merged likelihood ratio im-
age. The bounding boxes estimated are better than those given
by the overall description in the middle column in Fig. 2.

We evaluate the performance of the proposed algorithm
quantitatively using the image sequences with ground truths.
The ground truths are gotten by labeling the images manually
into foreground and background. We threshold the likelihood
ratio images and compare them with the ground truths. The
comparison results are shown in Fig. 3. The error rates of
the merged likelihood images are lower than that of the di-
rect back-projection of the one histogram description in most
cases. However, the merged likelihood images are worse than
the direct back-projection in certain frames. We are investi-
gating the reason of the poor performance in these frames.

6. CONCLUSION AND FUTURE WORK

We devise a patch-based adaptive tracking algorithm. The tar-
get decomposition is effective in improving the performance
of the tracking. The proposed algorithm provides better target
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Fig. 3. Comparison of likelihood ratio images.

localization and likelihood images. These results lay a foun-
dation for foreground segmentation using graph cuts or other
methods. They are also useful in target model updating to
avoid drifts.
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