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ABSTRACT
We present an efficient people tracking and segmentation
algorithm for gait recognition. Even though most existing
gait recognition algorithms assume that people have been
tracked and that silhouettes are available for gait classifica-
tion, tracking and segmentation are very difficult especially
for articulated objects such as human beings. We improve
the performance of tracking and segmentation based on spa-
tiotemporal shape constraints. First of all, we track people
using an adaptive mean-shift tracker which produces initial
results consisting of bounding boxes and foreground likeli-
hood images. The initial results, generally speaking, are not
accurate enough to be applied in gait recognition directly.
We refine the results by matching with silhouette templates
sequences in a batch mode to find the optimal silhouette-
based gait paths corresponding to the input. Since the pro-
cess is computationally expensive, we propose a novel effi-
cient distance computation method to accelerate the spa-
tiotemporal silhouette matching. The spatiotemporal shape
priors are embedded into the Min-Cut algorithm to segment
people out. Experiments on indoor and outdoor sequences
demonstrate the effectiveness of the proposed approach.

Categories and Subject Descriptors
I.5 [Pattern recognition]: Surveillance; I.5.4 [Applications]:
Computer vision—tracking,segmentation

General Terms
Algorithms

Keywords
People tracking, people segmentation, Spatiotemporal shape
priors

1. INTRODUCTION
People tracking and segmentation in natural environments

are prerequisites for gait recognition, an effective approach
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to identify individuals at a distance from a camera. Spa-
tiotemporal silhouette information has been widely used in
gait recognition [16, 25, 27] because of its invariancy to illu-
mination, background changes, and human clothing. Most
existing gait recognition algorithms assume that people have
been tracked and that silhouettes have been extracted suc-
cessfully. However, people tracking and segmentation are
very difficult due to occlusions, illumination changes, and
the large variability in the shape and articulation of human
body. This problem is further complicated by the quality of
surveillance videos and the size of people within the frames.

This paper aims to improve people tracking and segmen-
tation performance by incorporating spatiotemporal shape
priors. Silhouettes are formed in image sequences when a
person is performing certain activity or gesture. The shape
deformation over time of such silhouettes depends on the
activity performed. The deformation is under certain con-
straints that result from the physical body properties and
the temporal continuities. These constraints can be used as
priors for people tracking and segmentation.

We adopt a coarse-to-fine strategy to deal with tracking
and segmentation. First, an adaptive mean-shift tracker [9,
26] is applied to provide preliminary tracking results includ-
ing bounding boxes and foreground likelihood images. Since
the results are not accurate enough for gait recognition, the
Foreground Likelihood Images (FLI) are matched with Stan-
dard Gait Models (SGM) that have been built based on well
segmentation silhouette sequences. The optimal path corre-
sponding to the input is to be found in a 5-D space where po-
sition, scale, and gait phase are optimized. The spatiotem-
poral shape constraints are embedded into the Min-Cut al-
gorithm [3] to improve people segmentation. The spatiotem-
poral shape priors are advantageous over single shape priors
since monocular people shape information in one frame is in-
herently ambiguous due to Necker reversal [1]. In addition,
matching one FLI with silhouettes can lead to problems be-
cause of the poor quality of the FLI. Such problems happen
less frequently in the proposed matching method because we
find the optimal path for all input FLIs. The ambiguity can
be resolved by considering the spatiotemporal continuities.

Matching between sequences is computationally expensive
especially when the optimal path has to be found in the 5-D
space. We propose an efficient sequence matching method
that accelerates the computation. The values at each posi-
tion in the templates of the standard gait models are sorted
during the initialization. Consequently, it is not necessary to
compare the values of foreground likelihood images with the
values of the templates directly. The computation is trans-
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formed into a binary search process. The computational
complexity is reduced from O(n) to O(log n). It is of great
importance when large standard gait models are employed
to represent wide varieties of activities. This method can be
also used in other applications when silhouette matching is
necessary(i.e., [15]).

The proposed approach matches shape sequences in a batch
mode. Batch mode should be avoided in many cases for the
sake of efficiency and effectiveness. However, the batch mode
we apply is well fitted into gait recognition framework since
shape information in a sequence is necessary to perform gait
classification. While the computational cost is another con-
cern of the matching in a batch mode, it is partially solved
by the proposed efficient silhouette matching method.

Following a literature review, Section 2 briefly introduces
the adaptive mean-shift tracker. Section 3 describes the op-
timal path searching using Dynamic Time Warping (DTW).
Section 4 introduces the segmentation in which shape priors
are embedded into the Min-Cut algorithm. Experimental
results on real image sequences are demonstrated in Section
5. Section 6 concludes this work.

1.1 Related Work
Tracking and segmentation are, in essence, state estima-

tion and image labeling based on observations and prior
knowledge. Observations such as edges or photometric in-
formation are susceptible to noise and occlusions. It should
help to introduce high-level knowledge such as shape or
dynamics priors into tracking and segmentation. Filtering
techniques have been used in people tracking [19] because
shape or dynamics models can be added into a probabilistic
framework. However, many such tracking algorithms re-
quire complex models defined for the object to be tracked.
Toyama and Blake [23] proposed an exemplar-based prob-
abilistic tracking algorithm. The use of exemplars allevi-
ates the difficulty of constructing complex motion and shape
models. However, their algorithm cannot deal with people
segmentation.

Filtering based algorithms also suffer from the high dimen-
sionality of human pose state space. It has been demon-
strated that the space of possible human motions can be
reduced into a lower dimensional space using dimensionality
reduction algorithms [10]. Li et al. [14] proposed a coor-
dinated mixture of factor analyzers for bidirectional map-
ping between the original body pose space and the low-
dimensional space. Urtasun et al. [24] presented an im-
pressive people tracking algorithm based Gaussian Process
Dynamical Models (GPDM). Precise 3D motion data is nec-
essary for the learning of GPDM. None of the above works
handles people tracking and segmentation interactively.

Bray et al. [6] showed that segmentation and pose estima-
tion can be integrated in a Bayesian framework simultane-
ously considering photometric and prior information. They
used rough pose specific shape prior to improve segmen-
tation results, which bears certain similarity to our work.
However, the integration is carried out in a single frame. As
we have mentioned, silhouette matching in one frame may
generate ambiguous results. In contrast, our approach tries
to find an optimal path by shape sequence matching that
resolves the ambiguity in spatiotemporal context. Brox et.
al [5] proposed another integration framework for segmen-
tation and pose estimation where level sets are employed to
do segmentation. They demonstrated the effectiveness of
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Figure 1: The tracking results of two frames from
an indoor and an outdoor sequences. The images in
the first row are the input images, and the bounding
boxes computed by the tracker is overlaid on them;
the images in the second row are the foreground
likelihood images.

the integration on rigid objects but not articulated objects
such as people. Rathi et al. [18] formulated a particle filter-
ing algorithm in the geometric active contour framework in
which temporal coherency and curve topology are handled.
Although their approach can track moving and deformable
objects under partial occlusions, it cannot deal with highly
deformable objects [18].

Bilayer video segmentation for video-chat sequences has
been intensively investigated based on Conditional Random
Fields (CRF) [9, 12]. Segmentation for binocular stereo [12]
and monocular video [9, 28] have achieved impressive re-
sults. People in video-chat sequences usually have few artic-
ulated actions, which alleviates the difficulty of the segmen-
tation. In addition, these methods deal with static back-
grounds with limited variations.

2. ADAPTIVE MEAN-SHIFT TRACKING
We adopt an adaptive mean-shift tracking approach [9,

13, 26]. The mean-shift algorithm and its variations have
achieved success in object tracking due to its efficiency, sim-
plicity, and robustness. The mean-shift algorithms find lo-
cal maxima of a similarity measure between the color his-
tograms (or kernel density estimations) of the model and
the candidates in the image. Since fixed color features are
not always discriminative enough, the basic mean-shift algo-
rithm [8] has been extended to an adaptive tracker in which
discriminative features are selected from multi-cue [7, 26].

The adaptive tracker provides bounding boxes and gener-
ates FLIs by back-projecting likelihood ratios into each pixel
in the image [21].

Fig. 1 shows the tracking results of two frames in indoor
and outdoor environments. It is clear that the bounding
boxes computed by the tracker are not well aligned with the
person in the images (Fig. 1(a),(b)). There are occlusions in
Fig. 1(a). The foreground likelihood image contains many
errors. Such errors are unavoidable in tracking due to the
variations of the foreground or background. The optimal
path searching described in next subsection improves the
alignment using the imperfect bounding boxes and FLIs.
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3. OPTIMAL PATH SEARCHING IN DTW
We match FLI sequence with silhouette templates in the

standard gait models. The key is that the matching be-
tween the sequences solves the problems caused by imperfect
tracking results. We can find the optimal path for the in-
put FLI sequence because the sequence matching takes gait
smoothness constraints into consideration. In contrast, the
matching between one FLI and silhouette templates can be
violated by the errors in tracking results.

A Standard Gait Model (SGM) is constructed for the
matching. Tanimoto distance [22] is taken as the similar-
ity measure between FLIs and silhouette templates. The
computation of Tanimoto distances is very expensive. An
efficient distance computation method is proposed to deal
with this problem.

3.1 Standard Gait Model
We need high quality silhouette templates for the mod-

eling of the SGM. We do temperature-based background
subtraction in video sequences captured by an infrared-ray
camera. The extracted silhouette templates are normalized
by scaling and registration to produce SGM with the prede-
fined size (The height and the width of SGM are denoted by
hg and wg, respectively). The silhouettes are scaled so that
each height is hg and the aspect ratio is maintained. They
are also registered to make the centers of these silhouette
region corresponding to the SGM image center (cgx, cgy).

After the registration, the gait period Ngait is detected
by maximizing autocorrelation of the normalized silhouette
sequence for the temporal axis and the standard gait model
�g(φ) is obtained as an averaged silhouette for each gait phase
φ:

�g(φ) =
1

NP

NP∑

i=1

�h(iNgait + φ), (1)

where �g(φ) is the SGM for phase φ, �h(n) is the normalized
silhouette image at nth frame, and NP is the number of gait
periods in the training sequence.

3.2 Matching Measure
FLIs generated by the tracker should be normalized to

have the same size as the silhouette templates. An FLI

at the nth frame is denoted by �f(n). The center and the
height of a human region’s bounding box are denoted by
(cx, cy) and h respectively. Registration and scaling based
on the bounding box are processed in the same way as the

SGM and the normalized FLI �fN (n; cx, cy , h) at nth frame
is produced.

Tanimoto distance [22] is exploited as the measure be-

tween the FLI �fN and the SGM �g :

DT (�fN , �g) = 1 −
∑

(x,y) min{fN (x, y), g(x, y)}
∑

(x,y) max{fN (x, y), g(x, y)} , (2)

where fN (x, y) and g(x, y) are likelihood and silhouette val-
ues at (x, y) respectively. The Tanimoto distance between
an FLI and a SGM is 1 if they have identical shapes. The
Tanimoto distance is 0 when there is no overlapping between
them.

3.3 Optimal State Estimation
The optimal SGM could be computed by minimizing the

Tanimoto distance if initial tracking boxes are accurately

aligned with the person. Unfortunately, the initial track-
ing bounding boxes always have certain deviations from the
perfect alignment, which lead to false matching of the SGM.
Therefore we have to search for the optimal SGM by trans-
lating and scaling the bounding boxes in FLIs. The trans-
lated and scaled bounding box candidates are defined as

�fNQ(n;�s) = �fN (n; (cinit
x +sx∆cx, c

init
y +sy∆cy , h

init+sh∆h)),
(3)

where (cinit
x , cinit

y ) and hinit are the center and the height of
the tracking bounding box; ∆cx, ∆cy are quantization steps
for translations in x and y directions; ∆h is the quantization
step for height scaling. The vector �s = (sx, sy , sh) represents
translation and scaling coefficients. In this work, the steps
are set to ∆cx = ∆cy = ∆h = 0.01hinit empirically.

The optimal state is estimated based on the searching.
�x = (φ,�s) denotes a state vector in the 4-D searching space.
We define a cost function for silhouette matching for state
�x at nth frame. The optimal state is found by minimizing
the following cost

�x∗
sil = arg min

�x∈X
Csil(n, �x), (4)

where Csil(n, �x) = DT (�fNQ(n,�s), �g(φ)); X is the domain of
�x. The parameters are set to 1 ≤ φ ≤ Ngait,−5 ≤ sx ≤
5,−25 ≤ sy ≤ 25,−5 ≤ sh ≤ 5 empirically.

This optimization described so far, however, does not con-
sider gait smoothness constraints resulted from the physical
body properties and the temporal continuities. The cost
Csil is minimized for each frame separately. We will intro-
duce the global optimization using Dynamic Time Warping
(DTW) in the next subsection.

3.4 Global Optimal Path Searching Using DTW
DTW is exploited in the global optimization to incor-

porate gait smoothness constraints. The initial tracking
bounding boxes are preprocessed using a moving average
filter. The filter size is set to 11 frames empirically.

After the preprocessing, the DTW is computed to find
the optimal path in a 5-D space (n, �x). CDTW (n, �x(n)) is
a cumulative cost at state �x(n) at nth frame when the op-
timal path from the first frame to nth frame is selected by
the DTW algorithm. The DTW cost for the first frame is
initialized as

CDTW (1, �x(1)) = Csil(1, �x(1)), ∀�x(1). (5)

Then, the DTW cost is calculated incrementally as

CDTW (n, �x(n)) =

Csil(n, �x(n)) +Ctrans(n, �x
∗
p(n− 1; �x(n)), �x(n)), (6)

where Ctrans is a transition cost from the previous state
�x(n−1) to the current state �x(n) at nth frame, which is de-
fined as the sum of the previous DTW cost and smoothness
constraint cost:

Ctrans(n, �x(n− 1), �x(n)) =

CDTW (n−1, �x(n−1)) +Csmt(�x(n−1), �x(n)), (7)

Csmt(�x(n−1), �x(n)) = α|min{δφ,Ngait − δφ}|, (8)

δφ = |φ(n) − (φ(n−1) + vφ)|, (9)
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where the vφ is an averaged phase transition velocity and α
is weight for smoothness constraint. The vφ is set to 1 and
α is set to 0.05 empirically.
�x∗

p(n− 1; �x(n)) is the previous optimal state chosen from
all the states which can transit to the current state (�x(n)).
It is defined as

�x∗
p(n− 1; �x(n)) =

arg min
�x(n−1)∈X(n−1;�x(n))

{Ctrans(n, �x(n− 1), �x(n))}, (10)

where X(n − 1; �x(n)) is a set of possible previous states
�x(n− 1) and is defined as

|min{δφ,Ngait − δφ}| ≤ ∆φtrans, (11)

|sx(n) − sx(n− 1)| ≤ ∆sx,trans, (12)

|sy(n) − sy(n− 1)| ≤ ∆sy,trans, (13)

|sh(n) − sh(n− 1)| ≤ ∆sh,trans. (14)

Here, the transition is limited to adjacent states, that is,
transition parameters ∆φtrans, ∆sx,trans, ∆sy,trans, and
∆sh,trans are set to be 1.

Once the DTW costs are calculated, the optimal path is
found by back tracking from the last frame (Let it be Nth
frame) as follows:

�x∗
DTW (N) = arg min

�x(N)
CDTW (N,�x(N)),

�x∗
DTW (n− 1) = �x∗

p(n− 1; �x∗
DTW (n)). (15)

Based on the estimated path, the optimal silhouettes tem-
plates with the optimal bounding boxes are provided as
shape priors for the Min-Cut segmentation.

3.5 Efficient Tanimoto Distance Computation
To find the optimal path, foreground likelihood sequences

are matched with silhouette template. The matching in-
cludes Tanimoto distance computation and optimal path
searching using DTW. The searching takes less than 0.2 sec-
onds. Unfortunately, computing Tanimoto distance directly
is very expensive, which takes more than 120 seconds when
the algorithm runs on a 1.6GHz laptop. The expensive Tan-
imoto distance computation makes the proposed approach
impractical.

We propose an efficient distance computation method which
does not compute the minimum and maximum in Eq. 2 di-
rectly. Since the silhouette template images have been given
in the initialization, we sort the values corresponding to each
position in the silhouette template images. The phase in-
formation of these templates is kept in the sorted results.
The minimum and maximum in Eq. 2 now can be com-
puted based on nearest value searching. A binary searching
is applied in the sorted results to find the value nearest to
the input foreground likelihood value. Therefore the maxi-
mum and minimum can be assigned without further compu-
tation. The computational complexity for the searching is
O(log nt), which is much more practical than the complexity
of the direct computation which is O(nt) (nt is the number
of the templates in the standard gait model). This method
is particularly effective when more templates are necessary
to cover large varieties of shapes. In our implementation,
we first compare the input likelihood value with the largest
and smallest values in the sorted results. If the input value
is larger than the largest one or smaller than the smallest

one, Tanimoto Distance computation is reduced to O(1) op-
eration. The proposed method is shown in Fig. 2. Note
that the template values are sorted only once during the
initialization.

Tanimoto Distance measures the overlapping regions of
two input images. Its computation time is further reduced
by reusing the computed overlapping regions [15]. Tanimoto
Distance can be formulated as

DT (�fN , �g) =
G+ F − C

C
, (16)

where

F =
∑

(x,y)

fN (x, y), (17)

G =
∑

(x,y)

g(x, y), (18)

C(fN , g) =
∑

(x,y)

min{fN (x, y), g(x, y)}. (19)

Based on this formulation, G (sum of gait template values)
is computed only once during the initialization. For each
input foreground likelihood image sequence, F is also com-
puted only once. C(fN , g) is computed based on the efficient
method.

Using the approach described above, it takes around 0.8
seconds to compute distances between an input foreground
likelihood sequence and all templates (including shifting,
scaling) on the 1.6GHz laptop. The proposed distance com-
putation method could be used in other applications when
silhouette template matching is necessary [15].

4. MIN-CUT SEGMENTATION USING
SHAPE PRIORS

The Min-Cut algorithm [3, 4] has achieved impressive
results in interactive segmentation and 3D reconstruction.
Automatic segmentation is extremely challenging based on
color information alone. Markov Random Fields, which are
the foundation of the Min-Cut algorithm, provide poor pri-
ors for specific shapes [6]. It is necessary to incorporate
shape priors into the Min-Cut algorithm to achieve reason-
able segmentation results.

4.1 Min-Cut Segmentation
Min-Cut algorithm is briefly revisited before the incorpo-

ration of shape priors. Let L = {1 . . .K} be a set of labels.
Let G = (V, E) be a graph with E ⊆ V ×V. Segmentation is
formulated in terms of energy minimization in the Min-Cut.
The cost function is obtained in a context of MAP-MRF es-
timation. The purpose of the Min-Cut is to seek the labeling
of image pixels (P) by minimizing energy:

E(A) = Esmooth(A) + Edata(A), (20)

where A = (A1, . . . , A|P |) is a binary vector whose compo-
nents specify label assignment; Esmooth measures the smooth-
ness of neighboring pixels; and Edata measures the disagree-
ment between labeling and the observed data. Esmooth and
Edata are formulated respectively as

Esmooth(A) =
∑

{pq}∈N
Vpq(Ap, Aq)
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Figure 2: The efficient Tanimoto Distance Computation.

and

Edata(A) =
∑

p∈P

Dp(Ap),

where N contains all unordered pairs of neighboring pixels;
Vpq measures the smoothness of interacting pairs of pixels;
Dp is determined by the fitness of p given the observed data.

In this work, Vpq is formulated as Vpq ∝ e−(I(p)−I(q))2 /2

‖p−q‖ and

Dp is computed as the probabilities of pixel p belonging to
the foreground.

4.2 Min-Cut Segmentation Using Shape
Priors

Shape priors add an energy term to the Min-Cut algo-
rithm:

E(A) = Esmooth(A) + Edata(A) + Eshape(A). (21)

The shape priors from the optimal path searching are silhou-
ettes of people. The Min-Cut now includes the shape fitness,
smoothness and data initial labeling. The energy function
Eshape is penalized if the segmented contour deviates from
the boundary of the silhouette.

Shape priors are represented by a distance transform re-
sult [11]. Edges are detected in the silhouette image using
Canny edge detector. Then Euclidean distance transform [2]
is applied in the images. We found that the method in [11] is
lacking since the probabilities decreases too quickly near the
contour. We decrease the distance values obtained by dis-
tance transform by applying a local searching. We extract
edges in the input images. The distance is kept without
changes if there are edges near the shape prior. Otherwise
the distance values are multiplied by a constant factor (The
factor is set to 0.8 in this work). The cost function of shape
priors is well described in the transformed image. The shape
prior energy is written as

Eshape =
∑

(pq)∈N :Ap �=Aq

ψ(p) + ψ(q)

2
, (22)

where ψ is a value on the transformed image.

5. RESULTS
The proposed approach has been implemented and tested

on indoor and outdoor sequences with ground truth. The
first sequence is captured in an indoor environment by a

stationary camera. The second sequence is captured in an
outdoor environment by a moving camera. The tracking
and segmentation are challenging due to the occlusions in
the first sequence, the dynamic background in the second
sequence and the appearance similarity between the fore-
grounds and the backgrounds in the two sequences. The
images in these sequences have a size of 360 × 240 pixels.
The heights of the persons in the sequences are less than 100
pixels.

5.1 Refinement of Bounding Boxes And Phase
Estimation

The results of the indoor and the outdoor sequences are
shown in Fig. 3 and Fig. 4 respectively. The initial bound-
ing boxes produced by the tracker are shown in Fig. 3(b)
and Fig. 4(b). Some of the bounding boxes are not well
aligned with the people regions and that initial foreground
likelihoods are low for some parts(Fig. 1). The person is
occluded by a table in some frames.

Based on the optimal path searching results, the tracking
bounding boxes are shifted to better positions. The bound-
ing boxes are not aligned with the person accurately. The
vertical centers in the initial bounding boxes deviate from
the correct positions. The positions are adjusted downward
based on the optimal path searching results. The horizon-
tal centers of the initial bounding boxes are relatively more
accurate. They are shifted less frequently than the vertical
centers.

The selected silhouette templates provided by the search-
ing results are shown in Fig. 3(b). The gait phases cor-
responding to the walking person are correct. The shape
priors are incorporated into the Min-Cut algorithm which
gives the segmentation results in Fig. 3(c).

We evaluate the smoothness of walking phase transferring
in Fig. 5. The phases estimated by using and without using
DTW are compared in Fig. 5. The phases estimated using
DTW are much more accurate than those without DTW. It
demonstrate the importance of DTW for the optimal path
searching. The phase estimation also verifies the necessity
of searching in a spatiotemporal space instead on a single
frame.

5.2 Segmentation Results
Segmentation performance of our algorithm is evaluated

on the indoor and outdoor sequences. The ground truths
of these sequences are got by labeling the images manually.
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Figure 3: Tracking and segmentation results of the indoor sequence. (a) Input images; (b) Initial bounding
boxes (in red) generated by the tracker, optimal bounding boxes (in green) and gait models (phase) obtained
using the optimal path searching; (c) Segmentation results by embedding the shape priors into the Min-Cut
algorithm.
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Figure 4: Tracking and segmentation results of the outdoor sequence. (a) Input images; (b) Initial bounding
boxes (in red) generated by the tracker, optimal bounding boxes (in green) and gait models (phase) computed
by the optimal path searching using DTW; (c) Segmentation results by embedding the shape priors into the
Min-Cut algorithm.
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Figure 5: Phase transition estimation for the indoor sequence (a) and the outdoor sequence (b).

Each pixel is labeled as background, foreground, or ambigu-
ous [28]. The ambiguous label is used to mark mixed pixels
along the boundaries between foreground and background.
We measure the error rate as percentage of mis-segmented
pixels, ignoring ambiguous pixels.

Segmentation results using shape priors are shown for the
indoor sequence (Fig. 3) and the outdoor sequence ( Fig. 4).
Quantitative evaluation of the segmentation results with and
without shape priors is shown in Fig. 6. The segmentation
results with shape priors embedded are compared with those
without shape priors. The incorporation of shape priors im-
proves the performance of the segmentation. Compared to
the indoor sequence, the use of shape priors is more helpful
for the outdoor sequence. Thus shape priors play a more
important role in the challenging outdoor sequence.

6. CONCLUSIONS
We apply spatiotemporal shape constraints in people track-

ing and segmentation. The optimal path searching results
shift bounding boxes to correct positions. Moreover, they
provide shape priors in the segmentation. The segmenta-
tion performance is also improved based on spatiotemporal
shape constraints. The novel efficient silhouette template
matching method makes the proposed approach practical
for real surveillance applications.

More silhouette templates can be added into the standard
gait model to cover the wide varieties of activities. Thanks
to the low computational complexity of the proposed match-
ing method, it will not bring much additional cost.
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