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Abstract— This paper presents a novel coarse-to-fine global
localization approach that is inspired by object recognition
and text retrieval techniques. Harris-Laplace interest points
characterized by SIFT descriptors are used as natural land-
marks. These descriptors are indexed into two databases: an
inverted index and a location database. The inverted index is
built based on a visual vocabulary learned from the feature
descriptors. In the location database, each location is directly
represented by a set of scale invariant descriptors. The
localization process consists of two stages: coarse localization
and fine localization. Coarse localization from the inverted
index is fast but not accurate enough; whereas localization
from the location database using voting algorithm is relatively
slow but more accurate. The combination of coarse and
fine stages makes fast and reliable localization possible. In
addition, if necessary, the localization result can be verified
by epipolar geometry between the representative view in
database and the view to be localized. Experimental results
show that our approach is efficient and reliable.

Index Terms— Vision-based localization, visual vocabulary,
scale invariant features, Mobile robots.

I. INTRODUCTION AND RELATED WORK

Mobile robot localization, which estimates a robot’s
position relative to its environment, is a prerequisite for
robot autonomous navigation. The two key problems of
mobile robot localization are global localization and local
position tracking [19]. Global localization aims to deter-
mine the robot’s position in an a priori or previously
learned map without any other information than that the
robot is somewhere on the map. Given the initial robot
pose, local tracking is the problem of keeping track of
that position over time. Global localization gives mobile
robots capabilities to deal with initialization and recovery
from ”kidnaps” [15]. In this paper, we describe a complete
vision-based global localization system.

Vision-based global localization using natural landmarks
are highly desirable for a wide range of applications.
Different from other sensors such as sonar sensors and
range finders, visual sensors are passive and do not emit
energy into the environment. Moreover, it is often possible
to recover the robot’s current position with a single image
captured by a camera mounted on the robot because of
the richness of the visual information [4], [7], [15], [22].
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Both global and local visual information have been used in
many localization systems. Global visual information such
as collections of views [24] or color histograms [17] are
simple features which are easy to detect. However, they are
sensitive to illumination changes. Torralba et al. use texture
features through wavelet image decomposition [21]. Their
system can recognize specific places and new places. It is
difficult, however, for this system to recover exact relative
position of a robot.

The difficulty in vision-based localization is how to
determine the identity of an environment in the presence of
illumination and viewpoint changes and occlusion. Vision-
based localization is similar to object recognition in this
aspect. In recent years, great progress has been made in the
use of invariant features for object recognition and match-
ing. Schmid and Mohr propose a local feature detector
for general image recognition problems [14]. Mikolajczyk
and Schmid extend this idea to the Harris-Laplace detector
which detects Harris interest points at several scales and
then selects the right scale by computing the maximum
Laplace function [10]. Several local descriptors are avail-
able for interest point description. SIFT proposed by Lowe
is more powerful than others because it is designed to be
invariant to a shift of a few pixels in the interest region
position, and this error is one that often happens [9]. Wang,
Cipolla and Zha have proposed a localization strategy based
on the Harris-Laplace interest point detector and the SIFT
descriptor [22]. In their system, each location is represented
by a set of interest points that can be reliably detected in
images. This system is robust in the environments where
occlusion and outliers exist. Kos̆ecká and Yang also charac-
terize scale-invariant key points by SIFT descriptor in their
localization system [7]. These localization systems have to
match a new view to database by nearest neighbor search
which is not efficient enough for robot localization. Thus,
it is necessary to develop techniques for more efficient
localization.

The Vector Space Model(VSM), which has been suc-
cessfully used in text retrieval, is employed in this work to
accelerate the localization process. In the VSM, a collection
of documents is represented by an inverted index. In this
index, each document is a vector and each dimension
of the vector represents a count of the occurrence for a
word [12]. The documents for retrieval are parsed into



words based on a vocabulary; then different weights are
assigned to each term according to the frequency of the
term in the document. A visual vocabulary is constructed
for realizing these ideas in our localization system. We
use the k-means algorithm [5] to learn a visual vocabulary
where each term is a cluster of descriptors with similar
appearance. An inverted index is built based on this visual
vocabulary. Text retrieval techniques have been used in
image retrieval [18] and video retrieval [16]. They use
different feature detectors that are slow and not suitable
for localization.

The Epipolar geometry is employed in this work to
verify the localization result by discarding the outliers.
The epipolar geometry is the intrinsic projective geometry
between two views, which is contained in the fundamental
matrix. The fundamental matrix is computed from corre-
spondences of points and used to find the outliers that
are not correct correspondences. When the result of the
location recognition is ambiguous, there might be two or
even three locations getting almost the same number of
point correspondences. Some of the correspondences are
outliers.

A. Overview

The global localization strategy in this paper is coarse-
to-fine. The flowchart of this approach is given in Fig. 1.

First of all, representative images are captured in the
first exploration. Next, scale invariant interest points are
detected by the Harris-Laplace detector [10]. The Harris-
Laplace detector is built in a multi-scale framework, which
makes these interest points robust to scale changes (section
II-A). Local features are described by the SIFT descriptor
[9] (section II-B). Feature and description are computed
on monochrome version of images; color information is
not used in this work. A visual vocabulary is learned from
these descriptors using the k-means algorithm (section III-
A). The detected features will be indexed into two location
databases: an inverted index (section III-C) and a location
database (IV-A). All of the above is done offline.

When a mobile robot roams in this building, it obtains
its location by retrieving in the inverted index. The coarse
localization results are taken as candidates for fine local-
ization. Each candidate in the location database is matched
with the image for localization, and the correct location is
the one getting the largest number of votes. In the case
when the localization result is still ambiguous, epipolar
geometry constraints are employed to verify the result
(section V).

II. SCALE INVARIANT FEATURE DETECTION

AND DESCRIPTION

Scale invariant features used in this work are detected
by the Harris-Laplace detector and described by the SIFT
descriptor.

A. Scale Invariant Feature Detection

The Harris-Laplace detector can detect scale invariant
features [10]. The first step of this method is to compute
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Fig. 1. Flowchart of our localization system

interest points (Harris points) at different scales. Then the
points with a local maximal measure (the Laplacian) will
be selected as Harris-Laplace interest points.

Harris interest points that are invariant to rotation
changes can be detected reliably in images. Harris interest
point detection is based on the Harris function [10] as
given by:

det(C) − α · trace2(C) > TH (1)

where

C(x, σI , σD) = σ2
DG(x, σI)∗

(
L2

x(x, σD) LxLy(x, σD)
LxLy(x, σD) L2

y(x, σD)

)

(2)
σD is the derivation scale, σI the integration scale, G

the Gaussian and L the image smoothed by a Gaussian.
In Eq.(1), α is the coefficient of the Harris function and

TH is the threshold of the Harris function. In our system,
α and TH are chosen empirically to ensure the stability of
features. In this work, α is set to 0.06 and TH is set to
1500.

The Harris function used here has been normalized for
feature detection in different scales. The normalization
makes the value of the Harris function comparable between
different scales. If the Harris function is greater than the
threshold (TH ), the point is defined as a Harris interest
point.

Harris interest points can be detected at different scales.
According to [8], local extrema over scales of normalized
derivatives indicates the presence of the characteristic lo-
cal structures. The characteristic scale can be found by
searching for a local maximum over all scales. There are
several derivative based functions (Laplacian, Difference-
of-Gaussian and Harris function) that can compute a scale
representation of a feature. The Laplacian is used in the
Harris-Laplace interest point detection due to its high
detection rate [10]. It is defined by

|σ2(Lxx(x, σ) + Lyy(x, σ))| (3)

Harris-Laplace interest points can be detected by com-
paring the Laplacians at different scales. The scale of the



Fig. 2. Interest points detected by Harris-Laplace detector. The centers of the circles are Harris-Laplace interest points. The radiuses of the circles
indicate the characteristic scale of interest points.

point with maximum Laplacian is taken as the characteris-
tic scale of this interest point.

The accuracy of detected interest point is at pixel level,
which is not good enough for pose recovery. Parabola
interpolation is used in this work to get the precise locations
of interest points to sub-pixel level.

B. Feature Description

The output of the Harris-Laplace detector is scale invari-
ant features of different sizes (Fig. 2). These features need
to be described for indexing. Many techniques have been
proposed to describe interest points. Inspired by response
properties of complex neurons in visual cortex, Lowe
proposed the SIFT (scale invariant transformation feature)
descriptor [9]. In such a description, multiple orientation
planes represent a number of gradient orientations. Each
orientation plane contains only the gradients corresponding
to one orientation. This description proved to be robust
against feature location (coordinates in image) errors and
small geometric distortions [11]. In this paper, the SIFT
descriptor is used to represent interest points.

The orientation of an interest point is computed by
finding the maximum gradient direction in the neighbor-
hood of the point. This ensures that the description is
rotation invariant. The point region is normalized with the
mean and the standard deviation of gradients within the
point neighborhood, and thus this description is also robust
against illumination changes. The SIFT is sampled over a
4×4 grid in the neighborhood of an interest point. The
descriptor we get is of dimension 128.

III. LOCATION RETRIEVAL FROM INVERTED INDEX

The representative images of the locations are indexed
into the inverted index. Local features detected in these
images are described by the SIFT descriptor that is an 128-
dimension vector. The visual vocabulary is learned from
these features by using the k-means algorithm. Based on
this visual vocabulary, these descriptors are weighted and
indexed into the inverted index.

Fig. 3. Four sample terms of the visual vocabulary. These features have
different orientations and have not been normalized.

A. Visual Vocabulary Constructing

Construction of a visual vocabulary is realized by clus-
tering similar SIFT descriptors into terms that can be used
for indexing. The k-means algorithm aims to group similar
data objects into clusters. A cluster is a collection of data
objects that are similar to one another within the same
cluster and dissimilar from objects in different clusters. In
the vocabulary computed by the k-means algorithm, each
term represents a collection of descriptors that have similar
appearance.

Lloyd algorithm is a popular k-means algorithm. Given
the number of cluster, it is implemented in 4 steps: (a) Ran-
domly assign k centers as seed points in the data objects; (b)
Partition the data objects into k subsets by assigning each
data object into the cluster with the nearest seed point; (c)
Compute the centroids(center of the cluster) of the clusters
of the current partition; (d) Take the computed centroids as
the new seed points and go back to step (b), stop when no
more new assignment occurs. However, Lloyd’s algorithm
may get stuck in locally minimal solutions that are far
from the optimal [5]. For this reason it is necessary to
consider heuristics based on local search, in which centers
are swapped in and out of an existing solution. A hybrid
algorithm which combines these two approaches (Lloyd’s



algorithm and local search) is used to learn the visual
vocabulary [5].

More than 10,000 interest points are detected on the
representative images and described by the SIFT descriptor.
These vectors are input into the k-means algorithm as data
objects. k-means algorithm learned a visual vocabulary that
is composed of 320 terms.

Fig. 3 shows samples of terms learned from SIFT
features. Descriptors with similar appearance are clustered
into one term.

B. Inverted Index Building

The inverted index in this work employs the VSM
in which the representative image of each location is
expressed as a vector dj :

dj = (w1,j , w2,j , · · · , wnt,j) (4)

The components of each vector include all the possible
terms (t1–tnt

) in the visual vocabulary. Each index term
has an associated weight wt,j that indicates the importance
of the index term for the identification. There are several
methods available to compute the values of the weights
wi,j . This work adopts the method combining two factors:
the importance of each index term in the representative
view of location and the importance of the index term in
the whole collection of locations.

wi,j = tfi × idfi (5)

Importance of the index term in the representative view
of location is denoted as term frequency (tf). It can be
measured by the number of times that the term appears
in the location.

ifi =
nid

nd
(6)

where nid is the number of occurrence of term i in the
location j, nd is the total number of terms in the location
j.

The importance of the index term in the collection
is denoted as inverse document frequency (idf). An index
term that appears in every location in the collection is
not very useful. However, a term that occurs only in a
few locations may indicate that these few locations could
be relevant to a query view that uses this term. In other
words, the importance of an index term in the collection
is quantified by the inverse of the frequency that this term
appears in the locations in the index. it is computed by

idfi = log(
N

ni
) (7)

where N is the number of locations in the index and ni is
the number of locations that contain the term i.

C. Indexing of SIFT Orientation

A consistent orientation is assigned to each SIFT de-
scriptor based on local properties of the interest region.
The descriptor is represented relative to this orientation
and therefore achieves invariance to image rotation. Ori-
entation is very helpful information in matching images.

The descriptors are not directly indexed into the inverted
index using above algorithm. We propose a method that
makes orientation information usable in the first stage of
localization.

The SIFT descriptors to be indexed are projected onto
four directions. Indexing weights wt,j are accumulated in
four bins: wt,j,0, wt,j, π

2
, wt,j,π , and wt,j,3 π

2
. The represent-

ing vector dj is expanded to

dj = (dj,0, dj, π
2
, dj,π, dj, 3π

2
) (8)

Using orientation information of the descriptor increases
the correct ratio of location retrieval from inverted index.
The benefit of using orientation information is shown in
section VI. In addition, this method is robust to in plane
rotation, which is also shown in section VI.

D. Coarse Localization

In the coarse localization stage, the VSM evaluates the
degree of similarity of representative view with regard to
the query view as the correlation between the two vectors
dj and q. The query view is also a vector:

q = (w1,q, w2,j , · · · , wt,q) (9)

The VSM assumes that the similarity value is an indication
of the relevance of the location to the given query. Thus
the VSM ranks the retrieved locations by the similarity
value. In this work, the cosine of the angle between the
two vectors is employed to measure the similarity between
the query view and representative view j in the inverted
index:

sj =
dT

j q

‖dj‖‖q‖ (10)

To compromise the accuracy and efficiency of the localiza-
tion system, the locations whose similarities rank top five
will be taken as the input of next stage.

Using the inverted index increases the efficiency of
localization. Details will be shown in section VI.

IV. FINE LOCALIZATION

A robot captures a set of images when exploring a build-
ing at the first time. Scale-invariant interest points detected
in these images are indexed into the location database. This
database is the foundation of fine localization.

A. Database Building

The location database M contains a set of locations L.
Each location can be defined by a set of vectors V of scale
invariant interest point description. Each vector contains
the coordinates (u,v), orientation α and value of the SIFT
descriptor SIFT128.

M = {Li|i = 1, 2, 3...m} (11)

Li = {V i
j |j = 1, 2, 3...n} (12)

V i
j = (u, v, α, SIFT128)i

j (13)

During the database building process, each vector is added
into the database with a link to the location where the
corresponding representative image is captured.
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Fig. 4. Layout of the ground floor. L2, L12, and L19 are locations in database (Other locations are not shown in this figure). T1, T2, and T3 are
sites where images for localization are taken.

B. Fine Localization

Localization at this stage is carried out based on the
results of coarse localization. The top five candidates
computed by coarse localization are considered for location
recognition.

Fine localization is realized by using a voting scheme.
The new view for localization is represented by Lq.

Lq = {V q
j |j = 1, 2, 3...n} (14)

The Euclidean distances between a SIFT descriptor in Lq

and those in an Li are computed. The nearest neighbor
of this descriptor in Li is found by comparing all the
Euclidean distances with high discrimination capability. A
SIFT descriptor whose nearest neighbor is at least 0.7 times
closer than the second nearest neighbor are considered as
a possible vote. The votes for each location in the database
are accumulated. The location that gets the largest number
of votes is the most likely location.

V. VERIFICATION

In most cases, localization system gets correct location
after the above two-stage localization. Nevertheless, it
is possible that the result of the location recognition is
ambiguous. There might be two or even three locations
getting almost the same number of votes. In Fig. 7, the first
and the second location get 21 votes, the third location gets
18 votes. Under this circumstance, it is difficult to decide
which location is the correct one.

It is well known that the relationship between images
taken at different viewpoints is determined by epipolar
geometry. Therefore, epipolar geometry constraints are
used here to verify the voting result. Fundamental ma-
trix is estimated by using RANSAC algorithm [20]. This
algorithm is robust to outliers. If a vote (correspondence
between the interest point in image captured and features
in database) is accepted by using the fundamental matrix,
it is an inlier. Otherwise it is an outlier. The inliers of each
location are kept and the outliers are discarded. Only the
inliers are counted. The location that has the largest number
of inliers is the correct location. In Fig. 7, localization
system can now decide that the third location is the correct
one because it has 16 inliers.
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Fig. 5. The correct ratio of coarse localization. y (Vertical axis) is the
correct ratio. The correct location is ranked among the first x (Horizontal
axis) of retrieved locations. Test-C and Test-D have better performance
than Test-A and Test-B. This is due to the employment of orientation
information.

In this work, the verification will be carried out only
under the condition that the votes that the second possible
location gets are more than 80% of those that the first
possible location gets.

VI. EXPERIMENTS

The global localization strategy described above has
been implemented and tested in an indoor environments.
The environment model is obtained in the first exploration
stage. These images were captured, using a camera, at
different locations in the ground floor of a building. Fig. 4
is the sketch of the ground floor. Most images are taken at
an interval of 2 meters. The visual vocabulary is learned
from the SIFT descriptors of Harris-Laplace interest points.
The first database contains 34 representative images.

Three image sequences are captured for testing of our
approach. The first one (Sequence-I) is captured roughly
along the path of the first exploration by a camcorder.
The second one (Sequence-II) is captured in a path that
deviates from the one of exploration (about 0.5 meter from
the first exploration path). The third image sequence is cap-
tured with different viewpoints or illumination conditions.
(Sequence-III).

Four experiments are carried out base on Sequence-I
and Sequence-II. First, representative images are indexed
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Fig. 6. Localization results. In each row, first one is the image for localization, others are coarse localization results with descending order of matches.
The correct locations (denoted by black frames) are found after fine localization. (a) The image with in-plane rotation is ranked at the first in the coarse
localization; (b) The image with translation is ranked at the second in the coarse localization; (c) The image with rotation is ranked at the third in the
coarse localization; (d) The image with illumination change is ranked at the first in the coarse localization.
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Fig. 7. Result of localization and verification. Only three locations with
the largest number of votes are displayed. The third Location is correctly
found after using epipolar geometry constraints. Epipolar lines are drawn
on these images.

into an inverted index and a database without orientation
information. Using this index, Test-A tests Sequence-I, and
Test-B tests Sequence-II. Then orientation information is
indexed into another database and another inverted index.
Using this index, Test-C tests Sequence-I, Test-D tests
Sequence-II. The correct ratios of the coarse localization
are shown in Fig. 5. It is clear that employment of
orientation information increases the correct ratio. The
employment of orientation information does not have much
effect on in-plane rotation. In Fig 6(a), there are 30 degrees

in-plane rotation, and the location is correctly found and
ranked the first during the coarse localization stage.

Test-E tests Sequence-III. The localization result shows
that our system is robust to viewpoint and illumination
changes. We get correct location from the database when
the image for localization (T2 in Fig. 4) is taken at one
meters away from the location (L2 in Fig. 4) in the database
(Fig. 6(b)). An image taken at a different viewpoint was
correctly retrieved from the database. Localization was
accurate when the pan angle between the image in the
database (taken at L12 Fig. 4) and the captured image
(taken at T3 in Fig. 4) is 20 degrees (Fig. 6(c)). An
image taken under very bad illumination condition (taken
at T4 in Fig. 4) was also correctly found in the database
(Fig. 6(d)). It demonstrates the advantage of using scale
invariant features.

Scalability To test the scalability of our method, the
locations are extended to 127. More locations(93) were
explored and representative images were captured in the
first and the second floor of the same building. These
locations were indexed into an inverted index and a location
database using the same visual vocabulary. The Test-F
uses test Sequence-I and Sequence-II based on the inverted
index and the location database that contains 127 locations
. The result is shown in Fig. 5.

Computation Time The time for localization is shown
in Table I. All of the experiments are carried out on an
1.4GHz laptop. To compare the computation time using our



TABLE I

COMPARISON OF AVERAGE TIMES USED IN LOCALIZATION PROCESS

(SECONDS)

Test-A&B Test-C&D Test-E Direct-A Direct-B

Coarse 0.11 0.13 0.14

Fine 0.12 0.12 0.12 1.06 2.58

Total 0.23 0.25 0.26 1.06 2.58

approach with the one that directly uses fine localization,
two more tests directly using fine localization method were
carried out: Direct-A retrieves location from the database
that contains 34 locations and Direct-B gets location from
the database that contains 128 locations. It is clear that our
approach is more efficient than the method that directly
uses fine localization [22].

Computation time of Test-F (127 locations) is almost the
same as the time for Test-C and Test-D (34 locations). This
is due to the fact that most of the time is spent on matching
SIFT features to visual terms.

VII. CONCLUSIONS AND FUTURE WORK

We have discussed a global localization approach based
on a visual vocabulary. Object recognition and text retrieval
techniques are successfully employed in this work. The
coarse-to-fine strategy leads to fast and reliable global
localization. The employment of orientation information
increases the correct ratio of coarse localization. Our
approach is robust against illumination and viewpoint
changes.

Our work is a possible solution to deal with initialization
and recovery from kidnap problems of SLAM system. We
will integrate this approach into a SLAM system.
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[6] J. Košecká, L. Zhou, P. Barber, Z. Duric, ”Qualitative image based
localization in indoors environments”, in Proc. of IEEE Int’l. Conf.
on Computer Vision and Pattern Recognition, pp. II-3 - II-8, 2003.
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