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Abstract— In this paper, we propose a vision based mobile
robot localization strategy. Local scale-invariant features are
used as natural landmarks in unstructured and unmodified
environment. The local characteristics of the features we use
prove to be robust to occlusion and outliers. In addition, the
invariance of the features to viewpoint change makes them
suitable landmarks for mobile robot localization. Scale-invariant
features detected in the first exploration are indexed into a
location database. Indexing and voting allow efficient recognition
of global localization. The localization result is verified by
epipolar geometry between the representative view in database
and the view to be localized, thus the probability of false
localization will be decreased. The localization system can recover
the pose of the camera mounted on the robot by essential matrix
decomposition. Then the position of the robot can be computed
easily. Both calibrated and un-calibrated cases are discussed and
relative position estimation based on calibrated camera turns
out to be the better choice. Experimental results show that our
approach is effective and reliable in the case of illumination
changes, similarity transformations and extraneous features.

I. INTRODUCTION AND RELATED WORK

Mobile robot localization aims to estimate a robot’s pose
relative to its environment. Since localization gives mobile
robot autonomous capability, it plays a pivotal role in mobile
robot systems. For birds and insects, scene based navigation
strategy is prevalent [1] [17]. Inspired by this phenomenon,
visual information has been used to deal with localization and
navigation problems. Other sensors such as sonar and laser
range finders have also been used for localization. Sonar is
fast and cheap but usually very crude. Laser scanning system
is active, accurate but slow [3]. In recent years, visual sensor
is becoming cheap and reliable. Localization based on visual
information attracts more and more attention.

The existing vision based localization approaches can be
classified depending on the type of visual information they
attempt to use. Many localization systems use global visual
information such as collection of views [9] or color histograms
[10]. They are sensible to illumination change. Torralba et
al. use texture features through wavelet image decomposition
[11]. Their system can recognize specific places and new
places. It is difficult, however, for the system to recover exact
relative position of a robot. Different from the systems using
global visual information, we use interest points that can be
reliably detected in images. Consequently, our system is robust
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in the environments where occlusion and extraneous feature
exist. Se et al. have used scale invariant visual marks to deal
with mobile robot localization [3]. They used Triclops, a vision
system that has three cameras. In this work, only one camera
is enough for localization [14].

Two key problems in mobile robotics are global position
estimation and local position recovery. Global position esti-
mation is to determine the robot’s position in an a priori or
previously learned map. In our approach, many sets of features
in location database represent regions in space (locations).
Global position estimation (qualitative localization) is enabled
by recognizing locations, which correspond to the regions in
the robot’s current space that are similar in appearance. After
that, many correspondences between features in the represen-
tative image and those in the captured image can be found
during the localization process. Based on the correspondences,
relative pose is recovered. The mobile robot can then decide
what to do next step.

If map is a priori unavailable, many applications will allow
such a map to be built over time as the robot explores
the environment [8]. Vision-based simultaneous localization
and map building system (SLAM) can track features and
maintaining pose recursively. However, it is only applicable
to small scale and feature rich environments up to now. In
contrast, our approach can do localization inside a whole
building.

A. Overview

The approach described in this paper uses local image
features. The flowchart of this approach is in Fig. 1.

First of all, representative images are captured in the first
exploration. Next, scale invariant interest points are detected
by Harris-Laplace detector. The Harris-Laplace detector is
built under multi-scale framework, which makes these interest
points robust to scale changes (section Il-A). After image
feature detection, we describe them by SIFT descriptor (sec-
tion 11-B). Feature detection and description are computed on
monochrome version of images; color information is not used
in this work. Then, the detected features will be indexed into
a location database (section 11-C). When mobile robot roams
in this building again, it can recognize location by matching
image it gets with features in database. In case localization
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Fig. 1. Flowchart of localization system

result is vague, fundamental matrix estimation is used to verify
the result (section I11). Further more, it can recover its accurate
pose relative to the location in the database (section 1V).

Il. DATABASE BUILDING

A robot captures a set of images when exploring a building
at the first time. Harris Laplace detector is used here to detect
interest points. Scale-invariant interest points detected in these
images are indexed into a location database. This database is
the foundation of localization.

A. Scale Invariant Feature Detection

Localization in this paper is based on local features that are
invariant to scale change. Mikolajczyk and Schmid propose
a method for detecting interest point [5]. The first step of
this method is to compute interest points (Harris points) at
different scales. Then points with a local maximal measure (the
Laplacian) will be selected as Harris-Laplace interest points.

Harris interest points that are invariant to rotation changes
can be detected reliably in images. Harris interest point
detection is based on Harris function (Equation 1) [5].
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Where op is the derivation scale, o is the integration scale,
G is the Gaussian and L is the image smoothed by a Gaussian.

In Equation 1, k is the coefficient of the Harris function. In
this work, it is set to 0.06. Threshold_Harris is threshold of
the Harris function. It is set to 1500.

Fig. 2. Interest points detected by Harris-Laplace detector. The centers of the
circles are Harris-Laplace interest points. The radiuses of the circles indicate
the characteristic scale of interest points.

The Harris function used here has been normalized for
feature detection in different scales. The normalization makes
the value of the Harris function comparable between different
scales. If the Harris function is greater than the threshold
(Threshold_Harris), the point is defined as a Harris interest
point.

Harris interest points can be detected at different scales.
According to [7], local extrema over scale of normalized
derivatives indicates the presence of characteristic local struc-
tures. The characteristic scale can be found by searching for
a local maximum over all scales. There are several derivative
based functions (Laplacian, Difference-of-Gaussian and Harris
function) that can compute a scale representation of a feature.
Laplacian (Equation 3) is used in Harris-Laplace interest point
detection due to its high detection rate [5].
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Harris-Laplace interest points can be detected by comparing
Laplacian at different scales. The scale of the point with
maximum laplacian is taken as the characteristic scale of this
interest point.

The accuracy of interest point detected is at pixel level,
which is not good enough for pose recovery. Parabola inter-
polation is used in this work to get the precise location of
interest point to sub-pixel level.

B. Feature Description

The output of Harris-Laplace detector is scale invariant
points of different size (Fig. 2). These points need to be
described for indexing. Many different techniques have been
proposed to describe interest point. Inspired by response
properties of complex neurons in visual cortex, Lowe proposed
SIFT (scale invariant transformation feature) descriptor [6].
In such a description, multiple orientation planes represent
a number of gradient orientations. Each orientation plane
contains only the gradients corresponding to one orienta-
tion. This description is proved to be robust against feature
location (coordinates in image) errors and small geometric



distortions. In this paper, SIFT descriptor is used to represent
interest point. Orientation of point is computed by finding
the maximum gradient direction in the point neighborhood.
This ensures that the description is rotation invariant. The
point region is normalized with the mean and the standard
deviation of gradients within the point neighborhood, thus this
description is also robust under illumination changes. SIFT is
sampled over 4x4 grid in the neighborhood of an interest point.
The descriptor we get is of dimension 128.

C. Database Building

A location database M contains a set of locations L. Each
location can be defined by a set of vectors V of scale invariant
interest point description. Each vector contains the coordinates
(u,v), orientation o and SIFT descriptor SFTg.

M ={Li=1,2,3..m} (4)
L'={V/]j =1,2,3..n} (5)
V) = (u,v,a, STFT12)} (6)

During the database building process, each vector is added
into the database with a link to the location for which it has
been computed.

I1l. LOCALIZATION AND VERIFICATION

When the robot roams again in the environment, image is
captured. Given a single view, localization system can find
the location that that is the closest to the input image from
the database. Localization is realized by using voting scheme.
Each input descriptor V is compared with the descriptors
in the database. Then the Euclidean distance between the
input descriptor and the descriptors in location database is
computed. If the Euclidean distance is below a threshold, the
corresponding location gets a vote. The vote for each location
in the database can be easily accumulated. The location that
gets the largest number of votes is the most likely location.

In most cases, localization system gets correct location di-
rectly. Nevertheless, if the image captured has a very different
viewpoint from any locations in the location database, there
might be two or even three locations getting almost the same
number of votes. In Fig. 3, location 1, 18 get 30 votes, 6
gets 28 votes. Under this circumstance, it is difficult to decide
which location is the correct one.

It is well known that the relationship between images taken
at different viewpoints is determined by epipolar geometry.
Therefore, epipolar geometry constraints is used here to verify
the voting result. Fundamental matrix F is estimated by using
RANSAC algorithm [13]. This algorithm is robust to outliers.
If a vote (correspondence between interest point in image
captured and features in database) is accepted by fundamental
matrix, this is an inlier. Otherwise it is an outlier. The inliers of
each location are kept and the outliers are discarded. Only the
inliers are counted. The location that has the largest number
of inliers is the correct location. In Fig. 3, localization system
can now decide that location 1 is the location we need because
it has 22 inliers.
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Fig. 3. Result of localization and verification. Only three locations with
the largest number of votes are displayed. Location 1 is correctly found after
using epipolar geometry constraints.

IV. RELATIVE POSE ESTIMATION

The relative pose of the robot is recovered after the global
localization stage. Interest points detected in the captured im-
age are matched with the features in the database that represent
this location. Many correspondences between interest points
are found to compute relative pose with respect to the reference
view by decomposing essential matrix.

We can get camera internal parameter matrix K; and Ky
using camera calibration method, where K; is the internal
parameters of the camera used in the very first exploration, and
Ky is the internal parameters of the camera used in following
exploration.

Based on fundamental matrix F and camera internal param-
eters Ky, Ko, essential matrix E is computed [15]:

E = KIFK, (7

Essential matrix can be decomposed into rotation R and
translation t [15]:
E=[t.R (8)

Where [t],, denotes the cross product matrix associated with
the translation vector.

Essential matrix has two equal singular values and one
zero singular value [15][16]. We can compute the rotation
(Equation. 11 and 12) and translation (Equation. 14 and 15)
based on singular value decomposition of essential matrix [16].

E = uDV7T 9)
Where
1 00
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R =uwTvT (12)
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sites where images for localization are taken.
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The solution of the pose is one of following four possible
matrices [16].

(uwvhiuco o 1)%) (16)
uwvT—u(o o 1)%) (17)
uwivTiuco o 1)7) (18)
UWivT—uco o 1)7%) (19)

The points in images must lie in front of of both cameras.
The right solution can be computed by checking whether the
point lies before the camera [16].

Different solutions have been given by many researchers to
recover pose without camera calibration. We have tried method
in [12]. However, the pose recovery result based on this
method is too bad to be used (The solution of the pose is totally
different from the ground truth). Since camera calibration is
much easier than before, Pose recovery with calibration is
good enough to deal with most problems. Other localization
systems using one camera compute motion between cameras
based on known camera internal parameters [1][14].

V. EXPERIMENTS

The system described above has been implemented and
tested in a building. The database used throughout the ex-
periments contains 37 images. These images were captured,
using a camera, at different locations in the ground floor of
the building. Fig. 4 is the sketch of the ground floor. Most
images were taken at an interval of 2 meters. Thus the image
sequence was sparse and easy to be indexed into database. In
addition, localization was fast when the database was small.

Layout of the ground floor. L1, L6, L12, L18 and L19 are locations in database (Other locations are not shown in this figure). T1, T2 and T3 are

Fig. 5. Left, location gotten from database (L1 in Fig. 4). Right, image for
localization (T1 in Fig. 4). Localization system gets correct location despite
the distance between them is 2 meters.

We captured 30 images randomly under different conditions
such as viewpoint and illumination. These images were used to
test the global localization and pose recovery. The result shows
that our system is robust to those changes. We got correct
location from the database when the distance between them
was two meters (Fig. 5). Image taken at different viewpoint
was also correctly retrieved from the database. Localization
was accurate when the angle between image in database and
captured image is 20 degrees (Fig. 6). The image taken under
very bad illumination condition was also correctly found in
the database (Fig. 7). It demonstrates the advantage of using
scale invariant features. Epipolar lines are plotted on images
in Fig. 5 to Fig. 7.

In each localization, it took 0.5 second to detect interest
points in image and 0.8~1.2 second to find the correspondent
location in the database (on 1.4GHz laptop). The speed is not
fast enough. However, our database that uses only 37 images
to cover the ground floor. It is a “sparse” database. In contrast,
several hundreds images are used in [9]. The robot can walk
for more than 1 meter without doing localization again. In
addition, the interest point detection might speed up by using
new algorithms we are developing.

V1. CONCLUSIONS AND FUTURE WORK

We have discussed mobile robot localization approach based
on visual information. As far as we know, this is the first
time that Harris-Laplace interest point detector is used in a



Fig. 6. Left, location retrieved from database (L12 in Fig. 4). Right, image for
localization (T2 in Fig. 4). Localization is correct although the angle between
them is 20 degrees.

Fig. 7. Left, location retrieved from database (L19 in Fig. 4). Left, image
for localization (T3 in Fig. 4). Localization is correct although there are
illumination and viewpoint change.

localization system. In the current stage the experiments have
been carried out using purely local information. The interest
point is characterized by SIFT descriptor. The experiments
demonstrate promising performance. It is robust against illumi-
nation and viewpoint change. Location can be found correctly.

Odometry is a very important input in many existing sys-
tems. However, odometry is not very accurate especially after
robot has walked for a long distance. Error will probably be
accumulated and localization is no longer precise. Our method
does not depend on odometry. It is not only more accurate but
also more flexible.

Our work up to now is based on images captured by a
common camera. We will use video automatically captured
during an exploration. The image sequences in the video will
be classified and clustered.

Since the speed of our system is not fast enough, we
are working on improving the performance of Harris-Laplace
detector. At the same time, we are doing research on a new
indexing method based on feature clustering algorithms.
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