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Abstract. This paper describes a method for automatic detection of
contractions in the small bowel through analyzing Wireless Capsule En-
doscopic images. Based on the characteristics of contraction images, a
coherent procedure that includes analyzes of the temporal and spatial
features is proposed. For temporal features, the image sequence is exam-
ined to detect candidate contractions through the changing number of
edges and an evaluation of similarities between the frames of each possi-
ble contraction to eliminate cases of low probability. For spatial features,
descriptions of the directions at the edge pixels are used to determine
contractions utilizing a classification method. The experimental results
show the effectiveness of our method that can detect a total of 83% of
cases. Thus, this is a feasible method for developing tools to assist in
diagnostic procedures in the small bowel.

1 Introduction

Information about contractions in the small bowel, in particular the number
of contractions, distributions and their visualization along the Gastrointestinal
(GI) tract usually reveals clinical pathologies in diagnostic procedures. For ex-
ample, weak and disorganized contractions are stated as bacterial overgrowth
disease; dysfunctions or the absence of contractions in a long duration is present
in some patients with functional dyspepsia [1]. The current techniques to mea-
sure motility patterns in the small bowel are well tolerated but still invasive
tests. Recently, a new clinical device using a system known as Wireless Cap-
sule Endoscopy (WCE) [2, 3] has become widely used. It allows examinations in
the small bowel to be both more intensive yet comfortable for patients. Using
these image data as the source for recognition of contractions presents intuitively
opportunities for developing tools to assist in diagnostic procedures.

In a typical examination, the WCE goes through the GI tract in 7-8 hours
capturing images at 2 fps, with around 20,000 to 30,000 frames of intestinal
images [3]. Visualization of the contractions is rendered in consecutive frames
showing shrinkage of intestinal folds. Particularly, at center of the contractions,
a wrinkle pattern that presents a state of occlusion of the intestinal lumen has



strong and sharp edges of wrinkles toward to a center point. Thus, contractions
are highly recognizable in a WCE image sequence from the combination of the
spatial and temporal features.

Addressing the issue of the detection of contractions is still at an initial state.
To recognize wrinkle patterns, extracted features from a structured tensor of the
intestinal images are mapped into a star-wise pattern in [4]; or in [5] the features
of ”steerable filters” are coded into radial shape patterns. On the other hand,
along a time dimension the contractions are determined by examining 5 wrinkle
frames within a window of a ±5 frames neighborhood (in [5]) by an evaluation
of intestinal lumen features (solidity, sharpness, deepness) of each image in an
interval of 9 continuous frames (in [6]). Accordingly, contractions are generated
in the form of a fixed number of frames by using features of separate frames.

Different from these systems, we examine continuous changes of features over
time and evaluated the relationship between frames and other frames to detect
possible contractions. Then, the spatial features are analyzed by describing the
structural pattern to determine contractions utilizing a classification method.
Following this strategy, the detection of contractions is more reasonable because
the duration of the contractions is not constrained but varies along the small
bowel. Implementations are undertaken in a coherent procedure that includes
three stages to automatically detect the contractions. The experimental results
imply that the method provides a useful way to recognize contractions.

The rest of this paper is organized as follows: Sec. 2 describes the charac-
teristics of the contractions. Sec. 3 explains the techniques for implementation
of a three-stage procedure. In Sec. 4, experimental results and discussions are
presented. Finally, Sec. 5 concludes the work and suggests further research.

2 Characteristics of Contractions in a WCE Image
Sequence

In terms of physiology, contractions are produced by the shrinkage of circular
muscle layers. A cycle of contractions begins at the widest state of the intestinal
lumen and rapidly occludes the lumen area until reaching the strongest shrinkage
state of the inner wall, then these folds relax at an ending state. Fig. 1 marks
contractions in an image sequence that is made up of 60 frames.

Fig. 1. Some contractions are marked in boxes of 60 continuous frames (from left to
right and top to bottom)



As showing of the marked frames, the edge features are important cues for
detecting contraction events. The number of edge pixels in the images increases
rapidly and then decreases, resulting in a strong peak at the contractions. More-
over, because of the movement of the WCE, the changes between successive
frames at contraction positions is more discriminative than others.

On the other hand, the center of the contractions presents a muscular struc-
ture, as shown in Fig. 2. These patterns include strong edges of the intestinal
wrinkles when the inner walls are folded. The muscular tone is toward a center
point and produces a state of occlusion of the intestinal lumen. The structure of
wrinkle patterns thus can be expressed by directional information.

Fig. 2. Some examples of the contractile patterns

For these characteristics, detecting maximal local peaks along the edge signal
and evaluating the similarity of successive frames allows for the detection of
events, which are considered as possible contractions. These results are highly
recognizable for final decisions based on analyzing the directions at the edge
pixels. A coherent procedure for implementation is described below.

3 Contractions Detection by Temporal and Spatial Features

3.1 Edges Extractions to Detect Possible Contractions

To detect possible contractions, denote f(x) as a function of the edge number:

f(x) =
∑

i

δ with
{

δ = 1 if i is an edge pixel
δ = 0 otherwise (with x is frame number) (1)

The Canny edge detector [7] is used to extract edges from an image. Edge
pixels are counted in a region where most of the edges appear. The size of the
region (192x192 pixels) is large enough to ensure that no important edges are
lost (with image resolution is 256x256 pixels). The signal f(x) is normalized in
the range of [0, 1] and smoothed by a Gaussian function to remove noise.

Possible contractions are located where f(x) is in a triangular shape. How-
ever, not all signals perfectly present this type of pattern because of the length
and the strength during the contractions. Thus, a morphological opening oper-
ator is applied to create a simpler graph than the original signal. The opening
signal suggests locations of positive peaks that are thinner than a structural ele-
ment. A procedure to look for a number of consecutive frames within an opening
signal that exceeds the structuring element duration is implemented. Fig. 3 shows
the positions of contractions detected in a sequence of 100 consecutive frames.



Fig. 3. (a) Possible contractions are marked on an original signal with starting (star
points) and ending (circle points) frames. (b) A positive case; (c) a negative case for a
contraction. The most edges regions are also marked in rectangles in (b) and (c)

3.2 Evaluations of Similarity for Eliminating Non Contractions

Figure 3 shows two cases of possible contractions in which sharp variations be-
tween consecutive frames in the positive case (3b) are opposed to the high sim-
ilarity in the negative case (3c). Shrinkage of the intestinal folds in the positive
cases make most regions that have low similarity, whereas the negative cases
imply a high similarity of homogeneous regions spanning consecutive frames.
These regions can be grouped into clusters by grouping similarity feature space
then evaluating similarity to discard redundant cases. Therefore, an unsuper-
vised clustering method that adopted from works in [8] are applied. Based on
an observation that a block of image pixels is more likely to belong to a cer-
tain cluster if it is located near the cluster centroid. It is reasonable to assume
that the similarity of blocks and their positions is represented by a Gaussian
distribution, and a set of regions are generated by a mixture of Gaussians.

First, N frames of a possible contraction are divided into Nblocks (Fig. 4a)
and an intensity histogram H (with Nbins) for each block is calculated. The
similarity sim of block t between frames j and j+1 are:

simt
j,j+1 =

∑

m∈Nbins

|Ht
j(m)−Ht

j+1(m)|

With H(m) =
∑

x,y∈block

{
1 if IntegerRound(

I(x, y)
Nbins

) = m

0 Otherwise

(2)

A feature vector is notated by: χ = {simt
0,1, ..., sim

t
N−1,N , posx, posy}, includ-

ing the similarity of blocks and their positions posx and posy. For a mixture
of K Gaussians, the random variable χ presents a probability for a Gaussian
component k by:

fk(χ|θ) = αk
1√

(2π)d|Σk|
exp{−1

2
(χ− µk)T

Σ−1
k (χ− µk)} (3)



where the parameter set θ = {αi, µk, Σk}K
k=1 consists of: αk > 0,

∑K
k=1 αk = 1

and µk ∈ Rd and Σk is a [d×d] positive definite matrix (in this case, d = N−1).
Given a set of feature vectors χ1, ..., χNblocks, a Maximum Likelihood (ML)

criterion is used to train the data to derive a parameters set θ, yielding:

θML = arg max
θ

f(χ1, ...., χNblocks|θ) (4)

The EM algorithm [9] is an iterative method to obtain θML. The parameter
set θML then provides probabilities following Eq. 3 to assign a feature vector
χ to a cluster using a Maximum A Posteriori (MAP) principle. The MIXMOD
library [10] is used for this implementation. The results of clustering are then
assessed through examining similarity data of the largest clusters. If these regions
include high similarity values, it implies a low probability of a true contraction
and so is decided as being non contractions. For example, Fig. 4 shows the results
for a negative case of contractions in Fig. 3c. With number of clusters K = 3,
Nblocks = 144 and Nbins = 16 are preselected in order to obtain a trade-off
between number of clusters regions and computational time, two largest clusters
1 and 2 include 60% and 28% total blocks. The average of similarity in these
regions are 0.63 and 0.52, respectively. This result show large homogenous regions
along the frames that are reasons to assign this case as one of non contractions.

Fig. 4. (a) A configuration to obtain feature vectors. (b) Results of clustering similarity
data using GMM for the possible contraction in Fig. 3(c). (c) Borders of the clusters
are superimposed on middle frames.

3.3 Detect True Contractions Through Spatial Features

As descriptions of the wrinkle patterns, orientations distribution of edge pixels
appears to be a powerful feature for discriminating between contractions and
non contractions. For the natural characteristics of contractions, not all of the
directions of wrinkles are isotropic and these patterns are not always purely sym-
metric. Thus, we describe the structure of an image by using an edge direction
histogram that seems well able to deal with more general cases of contractile
patterns. The frame that has the maximum edge number of each possible con-
traction is selected for this procedure.

For each edge pixel p, its gradient vector is defined as: D(p) = {dx, dy}. The
amplitude and direction of gradient vectors are:

Amp(p) = |dx|+ |dy| and θ(p) = arctan(
dy

dx
) (5)



To express directional features, a polar histogram H is built with the as-
sumption that the directions range from 0 to 360◦ and are divided into K bins
(predefined with K = 256, 4θ = 360/K =1.4◦):

H(αi) =
N(αi)
SN

where N(αi) =
∑

p∈Θ

log(Amp(p)) and SN =
K∑

i=1

N(αi)

Θ = {p|αi − 4θ

2
≤ θ(p) < αi +

4θ

2
}

(6)

Figure 5 shows the polar histograms H of non contraction (5a) and contrac-
tion (5b) cases. The patterns of the polar histogram show the directions are
spread every way in the contraction case, whereas in the non contraction case,
the polar histogram is distributed in only a dominant direction.

Fig. 5. Direction histogram of a non contraction (a) and contraction (b). Left side
shows the original frames with gradient direction at edge pixels, right side is a polar
histogram

Based on the signal of H, a simple K-Nearest-Neighbours classifier is used
to decide the contraction pattern. The structural similarity between two feature
vectors Hx and Hy is estimated by calculating the correlation coefficient corre(x,
y), that is:

corre(x, y) =
δxy + C

δxδy + C
(7)

where δx and δx are standard deviations of Hx and Hy; δxy is the covariance
of vectors and C is a small constant to avoid the denominator being zero. The
K-NN classifier trained with a data set which includes 1000 frames has been
labeled manually as non contraction and contraction cases.

4 Experimental Results

The experimental data were supported by the Graduate School of Medicine,
Osaka City University, Japan. Six sequences were extracted from different parts
of the WCE image sequences in the small bowel. The length of each sequence is
10 minutes. For each sequence, to get ground truth data, manual detections were
implemented by medical doctors. The positions at starting and ending frames
and the strongest position of each contraction are also marked.



According to the proposed method, the procedures are set up and imple-
mented by C++ programs on a PC Pentium IV 3.2 GHz, 1 GB RAM. Fig. 6
shows the results of the method for an example of 60 continuous frames (from
left to right and top to bottom). To evaluate the performance of the proposed
method, data as below are calculated for each sequence:

- The number of true contractions detected (True positives – TP)
- The number of wrong contractions detected (False Positives – FP)
- The number of lost contractions (False Negatives – FN)

Using these data, two criteria for the evaluation are:

Sensitivity =
TP

TP + FN
and FalseAlarmRate =

FP

TP + FP
(8)

Fig. 6. An illustration the effectiveness of the method. Possible contractions are marked
inside rectangle boxes. The redundant cases are removed after evaluating the similari-
ties between frames (marked by slanting). Contractions are recognized as positive cases
after utilizing the classification method (marked in square boxes)

The two first stages aim to effectively reduce non contractions with a mini-
mum loss of true positives. The sensitivity of Stage 1 and Stage 2 are 96% and
92%, whereas the false positive rates are 68% and 52%, respectively. For an eval-
uation of the overall performance of the entire process, Table 1 shows detailed
results of each sequence.

Table 1. Results of the overall process for each sequence

Sequence Manual Detection Proposed method True Pos. Lost Rate Sensitivity FAR

Seq 1 20 56 19 5% 95% 66%
Seq 2 30 44 27 10% 90% 38%
Seq 3 16 25 13 19% 81% 48%
Seq 4 48 50 40 17% 83% 20%
Seq 5 46 60 35 24% 76% 41%
Seq 6 33 41 24 27% 73% 41%

Mean 17% 83% 42%

Comparisons of the average of the results with those reported in [5] and [6]
are 71.5% and 73.5% for sensitivity, and 71% and 44% for false alarm rate,
respectively. Obviously, with the proposed method, which combines both spatial
and temporal features, the performance is more robust and thus more reliable.



However, the loss rate is still high in Seq 5 and Seq 6. The reason being that
the direction features are less effective for frames at the end of the small bowel
because of the weak contractions (Seq 6) or that some contractions have ambigu-
ous patterns (Seq 5). To overcome this issue, more features as changes in the
darkness area, or variations of wrinkles patterns (ex., using linear radial patterns
in [5]) along the time dimension can be added into the learning paradigm.

5 Conclusion

This paper presented a method to recognize contractions in the small bowel based
on analyzing temporal and spatial features. Contractions were successfully de-
tected through a coherent procedure. For temporal features, variations of edge
features and evaluations of similarity data between interval frames were imple-
mented to detect possible contractions. To detect a true contraction, the spatial
features of the possible contractions were presented through descriptions of an
edge direction histogram. From the experimental results, the overall performance
implied that the proposed method could detect 83% of the total contractions.
Thus, analyzing WCE image sequences by a combination of spatial and tem-
poral features appears a useful way to characterize contractions in the small
bowel. However, to ensure more reliable results with different types of data, in
future work we need to consider and examine other features to be factored into
the classification. In this way, the method proposed here will become a feasible
method for developing tools to assist in diagnostic procedures.
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