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Abstract

Reflectance and shape are two important components in visually perceiving the real
world. Inferring the reflectance and shape of an object through cameras is a fundamental
research topic in the field of computer vision. While three-dimensional shape recovery
is pervasive with varieties of approaches and practical applications, reflectance recovery
has only emerged recently. Reflectance recovery is a challenging task that is usually
conducted in controlled environments, such as a laboratory environment with a special
apparatus. However, it is desirable that the reflectance be recovered in the field with
a handy camera so that reflectance can be jointly recovered with the shape. To that
end, we present a solution that simultaneously recovers the reflectance and shape (i.e.,
dense depth and normal maps) of an object under natural illumination with commercially
available handy cameras. We employ a light field camera to capture one light field image
of the object, and a 360-degree camera to capture the illumination. The proposed method
provides promising results in simulation and real-world experiments.

1 Introduction
In the field of computer vision, we need to understand the geometry and material of an ob-
ject to obtain information about the object. The visual perception of the object depends on
the illuminating environment, which poses a challenging and interesting task for computer
vision to understand three components: the geometry, material, and illumination. This is in
fact an inverse rendering problem, the complexity of which is extremely high [20]. To relax
this complexity, computer-vision researchers usually assume to know one or two compo-
nents and they then can recover the remaining one(s). For example, researchers can assume
the reflectance is as simple as Lambertian reflectance, and the shape can then be recovered
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knowing the illumination [23, 31] or even without knowing the illumination [3]. Meanwhile,
other researchers assume to know the shape and the reflectance and can then recover the illu-
mination [9]. In our research, we found that the illumination is not a serious problem and can
be easily captured with a handy 360-degree camera [22]. We can thus relax the illumination
and focus on recovering the reflectance and three-dimensional (3-D) shape of the object.

3-D shape recovery has been well studied in the field of computer vision with vari-
eties of approaches and practical applications. The approaches can work under both con-
trolled [4, 23] and uncontrolled [19, 26, 34] environments. A large number of methods
assume Lambertian reflectance so that they can recover the scene with [6, 31] or with-
out [1, 3] consideration of the illumination. This also allows the methods to work with a
mobile or handy camera [27]. Other specific reflectance models, such as those of dielectric
reflectance [14, 25], mirrored reflectance [5], or a combination of Lambertian reflectance
and specular reflectance [28], are also assumed to relax the shape recovery.

However, reflectance recovery is challenging because real-world material reflectance is
difficult to represent mathematically with a model. Researchers therefore try to approxi-
mate real-world material reflectance with varieties of models for specific types of materials,
such as a Lambertian model for diffuse materials, dielectric model [33] for a ceramic or
plastic, Phong reflectance model [21] for specular material, Torrance-Sparrow reflectance
model [16, 29] for a rough surface, data-driven reflectance model [12], directional statistics
bidirectional reflectance distribution function (DSBRDF) model [9, 15] for more general re-
flectance. Measuring material reflectance is also difficult. The measurement is usually made
in a laboratory under well-controlled conditions. The widely used method relies on image-
based bidirectional reflectance distribution function (BRDF) measurement [2, 10, 12, 13] by
capturing many images of the material sample with different known light directions.

Moreover, joint shape and reflectance recovery using images is even more challenging,
particularly under uncontrolled illuminations. To relax the problem, most methods assume
a Lambertian material and try to recover the spatially varying BRDF and shape of the ob-
ject [1]. Other methods use a specific reflectance model such as a mirror model [5]. A dichro-
matic model (a combination of diffuse and specular reflectance models) is also used [32] with
a known point light source and it is thus only used in a laboratory. Oxholm and Nishino [19]
simultaneously recovered the general reflectance and shape of an object under natural illumi-
nation. Their method employs a general reflectance model (DSBRDF [15]) and thus works
with a wide range of real-world materials. However, it is only used for a well-setup envi-
ronment of multiple calibrated cameras or a single camera that moves to several positions
about the object. The method may be hard to employ in practice, which limits its real-world
application. In their work, shape is represented by the surface normal which is constrained
only by photo-consistency among sparse and wide-baseline stereo corresponding points. In-
spired by this pioneering work, we conduct our research with a light field camera to reduce
the preparation effort and encourage practical use. In particular, we further constrain the
shape by introducing depth and reformulate the probabilistic framework to update depth.
The depth and normal are separately updated owing the practical fact that depth and normal
maps may not be equivalent and they are directly updated with different cues, multi-view
stereo correspondence and radiometry, respectively. However, the depth and normal are
strongly correlated, and a new constraint is presented to tighten them. The constraint is re-
ferred to as depth-normal consistency constraint, a geometry constraint, in our paper. As a
result, we can estimate not only reflectance and normal but also depth simultaneously.

The contributions of our paper are summarized as follows. Our work is the first work
that recovers a general isotropic reflectance and depth map under natural illumination with a
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light field camera. The production of a dense depth map needs a huge computation cost. To
reduce the computational cost, we present a multi-stage algorithm, where the earlier stage
solves a coarser problem with a simpler and faster solution.

2 Image Generative Model
Our system includes a light field camera that captures the light field image of an object and
a 360-degree camera that captures the environmental illumination. The light field and 360-
degree cameras are calibrated and registered so that their geometrical relationship is known
in advance. The world coordinate system coincides with the coordinate system of the light
field camera, where Oz is the optical axis. We use the plane and tangent direction presenta-
tion [35] for the light field image, where a scene ray is described by a four-dimensional func-
tion, III(x,y,s, t). (x,y) denotes parameter of a sub-aperture that a scene ray passes through,
while (x,y,0) gives 3-D location of the sub-aperture on the Oxy plane, and (s, t) represents
the tangent direction of the scene ray. The center sub-aperture location coincides with the
origin O. The environmental illumination LLL is captured by the 360-degree camera and is rep-
resented by a panorama image, of which each pixel is assumed as a directional light source
from infinite distance. In the world coordinate system, LLL is parameterized by the incom-
ing light direction ωωω i, LLL(ωωω i), where ωωω i = (sinθ cosφ ,sinθ sinφ ,cosθ), and θ and φ are
respectively the zenith and azimuth angles of the light direction.

The target object is assumed smooth and the surface geometry is represented by a surface
function F(x,y,z) = 0. The surface reflectance is assumed homogeneous and isotropic and
is represented by a single model with parameters R. In our algorithm, we only consider a
set of object points visible in the center sub-aperture image, ΩΩΩ = {PPP}. The object shape is
represented by a depth map Z = {ZPPP|PPP ∈ΩΩΩ} and a normal map N = {NNNPPP|PPP ∈ΩΩΩ}.

Figure 1: A 2-D illustration of
the world coordinate system and
light field representation.

The surface normal NNNPPP of an object point PPP =
(XPPP,YPPP,ZPPP) can be derived from the first partial deriva-
tive:

NNNPPP =
−(Fx(XPPP,YPPP),Fy(XPPP,YPPP),Fz(XPPP,YPPP))

T√
Fx(XPPP,YPPP)2 +Fy(XPPP,YPPP)2 +Fz(XPPP,YPPP)2

. (1)

This object point can be observed on the different sub-
aperture images (x,y) and directions (s, t) depending on
its depth such that

(s, t,1)T =
(
PPP− (x,y,0)T )/ZPPP. (2)

We see that s, t depends on the sub-aperture location
(x,y,0)T ; hence, s = s(x,y) and t = t(x,y). From (2), we
obtain a relationship between image points on the center
sub-aperture and on a surrounding sub-aperture image:

s(x,y) = s(0,0)− x/ZPPP, t(x,y) = t(0,0)− y/ZPPP. (3)

We define an observing direction ωωωPPP(x,y) for PPP from the sub-aperture (x,y); hence, ωωωPPP(x,y)
and (s, t,1)T are collinear:

ωωωPPP(x,y) =−
(
s(x,y), t(x,y),1

)T
/
√

s(x,y)2 + t(x,y)2 +1. (4)
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Because the direction (s(0,0), t(0,0)) of the point PPP is constant from the center sub-aperture,
the observing direction from a surrounding sub-aperture depends only on its location (x,y,0)
and the point depth ZPPP.

Given the geometry and reflectance function ρ , the actual reflectance III(x,y,s, t) on each
sub-aperture image captured by the camera can be modeled mathematically by integration:

EEE(x,y,s, t) =
∫

ρ(τ(ωωω i,ωωωPPP(x,y),NNNPPP);R)LLL(ωωω i)max(0,NNNPPP.ωωω i)dωωω i, (5)

where τ is a function that transforms ωi and ωPPP in relation with the surface normal NNNPPP into
halfway parameterization variables θd and θh [24].

3 Probabilistic Estimation Framework
Similar to the work of Oxholm and Nishino [19], we use a similar probabilistic framework
to formulate our estimation problem. The geometry and reflectance estimation can be for-
mulated as a maximum a posteriori for the whole light field:

p(N ,Z,R|III) ∝ p(III|N ,Z,R)p(N ,Z)p(R), (6)

where p(III|N ,Z,R) is a likelihood that quantifies how the geometry and reflectance match
the light field; it can also be referred as a measure of photo-consistency among all sub-
aperture images. p(N ,Z) is a geometrical constraint on the shape (normal and depth), and
p(R) is a practical reflectance prior. To cope with the high dynamic range of the reflectance,
we also process reflectance in the log-intensity domain [9, 19]. We assume the captured and
modeled image intensities differ by some scalar µ and Gaussian noise with variance σ2:

log(III(x,y,s, t)) = log(µEEE(x,y,s, t))+N(000,σ2) (7)
= log(EEE(x,y,s, t))+N(µ111,σ2). (8)

3.1 Image likelihood
We first describe the first term of (6), the image likelihood for the light field of the object.
It is a joint likelihood of individual likelihoods for light rays (u,v,s, t) from an object point
XXX . The individual likelihood is evaluated by a dissimilarity d(.) between the captured and
modeled intensities for the light ray:

p(III(x,y,s, t)|NNNXXX ,ZXXX ,R) = N
(
d(III(x,y,s, t),EEE(x,y,s, t); µ,σ2).

The joint likelihood for the whole object is then computed for all the object points using all
the sub-aperture images:

p(III|N ,Z,R) = ∏
XXX∈ΩΩΩ

∏
(x,y)

p(III(x,y,s, t)|NNNXXX ,ZXXX ,R). (9)

Although the baselines between camera sub-apertures are narrow, there are still mis-
matches between the sub-aperture images even when the depth map is perfect. We therefore
employ a robust score function for d(.) to compute the matching score between images. The
Welsh function is a robust function that is suited to our situation:

d(III(x,y,s, t),EEE(x,y,s, t);σ ,µ) =

√
nλ σ2

2

[
1− exp

(
− ‖ log III(.)− logEEE(.)−µ111‖2

nλ σ2

)]
,

(10)
where nλ is the number of color channels, which is three for R,G,B in our experiment.
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3.2 Geometrical constraints

We use the alternating optimization scheme to estimate all unknowns. The geometrical con-
straint is formulated depending on whether the normal or depth is updated:

p(N ,Z) ∝

{
p(N|Z) when updating depth,
p(Z|N )p(N ) when updating normal.

(11)

The detailed constraints are described below, and include (a) the depth-normal consistency
constraint, (b) the smoothness constraint on the surface normal ps, (c) the surface gradient
constraint pg, and (d) the occluding boundary constraint pb. The prior on the surface normal
is then p(N ) = ps pg pb. However, we do not apply any practical prior to the depth, as
described in (11).

(a) Depth-normal consistency constraint: This constraint results from the object surface
being smooth and the surface normal being perpendicular to the surface gradients. The
constraint that quantifies how much the normal matches the depth is

p(Z|N ) ∝ ∏
XXX∈ΩΩΩ

∏
YYY∈ne(XXX)

exp
(
−βzn

(
NNNXXX · (XXX−YYY )

)2
)
, (12)

where βzn controls the constraint strength and ne(XXX) is a set of neighboring points of XXX in
ΩΩΩ. Similarly, the constraint that quantifies how much the depth matches the normal is

p(N|Z) ∝ ∏
XXX∈ΩΩΩ

∏
YYY∈ne(XXX)

exp
(
−βnz

(
NNNXXX · (XXX−YYY )

)2
)
, (13)

where βnz controls the constraint strength.
(b) Normal smoothness constraint [19]:

ps(N ) ∝ ∏
XXX

∏
YYY∈ne(XXX)

exp
{
−βs arccos2(NNNXXX ·NNNYYY )

}
, (14)

where βs controls the strength of the constraint.
(c) Surface gradient constraint [17]: This constraint ensures the resulting gradient is the

same as in the observed image, and it is built on the center sub-aperture image only:

pg(N ) ∝ ∏
XXX

∏
YYY∈ne(XXX)

exp
(
−βg‖(logEEEYYY (.)− logEEEXXX (.))− (log IIIYYY (.)− log IIIXXX (.))‖2

)
, (15)

where βg controls the strength of this constraint.
(d) Occluding boundary constraint [19]: At the occluding boundary, the surface normal

should be oriented orthogonally to the observing direction:

pb(N ) ∝ ∏
XXX∈BBB

exp
(
−βb arccos2 (NNNXXX ·ωωωXXX (0,0))

)
, (16)

where BBB is the set of boundary pixels in the center sub-aperture image, and βb controls the
strength of this constraint.
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3.3 Reflectance constraints
We use the DSBRDF [9] to model an isotropic reflectance of the target material in our algo-
rithm. This reflectance is modeled as a sum of lobes for each color channel λ :

ρλ (θd ,θh;κ,γ,cccλ ) = ∑
r

cr,λ

(
exp
[
κr(θd)cosγr(θd)θh

]
−1
)
, (17)

where κ , γ respectively control the overall brightness and specularity of the lobes and chro-
maticity cccλ = {cr,λ} modulates the color channel λ with a constraint that ∑λ cr,λ = 1. There
are three lobes and three channels in our case. We thus need two chromaticity values per
lobe per channel, and six values for κ or γ per lobe. Totally, the DSBRDF is represented
by 42 parameters including six chromaticity parameters. In practice, Lombardi and Nishino
represented a DSBRDF with fewer parameters employing functional principal component
analysis for κ and γ [9]. κ and γ of each DSBRF can be represented by a point in a high-
dimension subspace ΨΨΨ = {ψi}|i ∈ {1, . . . ,36}. The subspace is constructed with a large
number of measured reflectance materials (e.g., using the MERL BRDF database [12]). The
earlier parameter ψi with smaller i statistically has more power to represent a practical BRDF.
Accuracy and compactness can be traded off using a subset of the first nΨΨΨ parameters. In ex-
periments representing the MERL BRDF database with this DSBRDF model, they showed
that with just nΨΨΨ=13 parameters, the MERL BRDF database could be fitted well [9]. In our
experiments, we use nΨΨΨ=14. In this compact representation, each reflectance is represented
byR= {ccc,ΨΨΨ}|ccc = {cccλ},ΨΨΨ = {ψi}|i ∈ {1, . . . ,nΨΨΨ}.

Further, we use two constraints on the DSBRDF reflectance, one for the chromaticities
and one for the coefficients so that p(R) = p(ΨΨΨ)βΨ p(ccc)βc . p(ΨΨΨ) = N

(
ΨΨΨ,ΣΣΣ

)
is the same as

in [19], where the covariance matrix ΣΣΣ is learned from the MERL database, and p(ccc) is the
same as in [9]. βψ , βc control the priors’ strength.

4 Multi-stage Algorithm
There are many unknowns for the depth Z , normal N , and reflectance R to be estimated
simultaneously. It is usually difficult for the estimation to converge stably. To efficiently
manage the stability and reduce the computational const, we make the estimation in stages.
The idea for this algorithm originates from the generative model of the light field image in
(5) with different simplification levels.

4.1 Stage 1: Depth Estimation from Plane Sweeping

When the shape is not accurate, we assume the reflectance and light functions are constant
for all observing directions, then we only estimate the depth. The probabilistic framework in
(6) is simplified by relaxing reflectance and light:

p(Z|III) ∝ p(III|Z). (18)

In this case, the object point has similar intensity crossing the sub-aperture images: I(x,y,s, t)≈
I(0,0,s(0,0), t(0,0)). We use plane sweeping to find an optimal depth by matching intensity
between the center and all other sub-aperture images.

A graph cut [8] is employed to obtain a smoother depth map.
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4.2 Stage 2: Depth and Normal Estimation with Lambertian
We only assume the reflectance function is constant for all observing directions, and we then
simultaneously update the depth Z and surface normal N . The probabilistic framework in
(6) is simplified by relaxing the reflectance:

p(N ,Z|III) ∝ p(III|N ,Z)p(N ,Z). (19)

This can be done by setting a special case of DSBRDF reflectance in (17) that there is one
lobe is 1 and γ and κ are set to 0 and 1, respectively. The estimation method is similar to that
presented in the next subsection with Lambertian reflectance.

4.3 Stage 3: Depth, Normal, and Reflectance Estimation
In this final stage, we use the DSBRDF to constrain the real-world isotropic material re-
flectance. All unknowns, depth, normal, and reflectance parameters, are updated without
approximation. It is costly to handle, but the computational cost is reduced appreciably by
the first two stages. An iterative optimization scheme using a probabilistic framework is
employed that alternates between (a) updating the Gaussian noise (σ ,µ), (b) updating the
reflectance, (c) updating the surface normal, and (d) updating the depth is employed.

(a) Update Gaussian noise: To update the Gaussian noise defined in (8) for current
reflectance and shape, we simply compute the standard deviation σ and mean µ of all the
errors for object points in the light field.

(b) Update reflectance: To update the reflectance R assuming that the geometry is
constant, the maximum a posteriori estimate in (6) becomes

p(R|III) ∝ p(III|N ,Z,R)p(ΨΨΨ)βΨ p(ccc)βc . (20)

However, observations between sub-aperture images do not differ much, and we only use the
light field from the center sub-aperture image to reduce the computational cost.

(c) Update surface normal: In this step, the surface normals are updated relying on the
photo-consistency among sub-aperture images, normal-depth consistency, and surface nor-
mal prior assuming that the reflectance and surface depth are known. The objective function
in (6) is formulated as

p(N|III) ∝ p(III|N ,Z,R)p(Z|N )ps(N )pg(N )pb(N ). (21)

(d) Update depth:
We continue to update the surface depth relying on the photo-consistency between sub-

aperture images and normal-depth consistency, assuming that the reflectance and surface
normal are known. The objective function in (6) is formulated as

p(Z|III) ∝ p(III|N ,Z,R)p(N|Z). (22)

The three stages are illustrated in Figure 2.

5 Experiments
We evaluated the proposed method by conducting several synthesized and real-world exper-
iments. Because there is no related work for the light field camera, we did not include a
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Figure 2: An illustration of the three stage results with an input light field. In stage 1, we
estimate only depth Z . In stage 2, we estimate the normal N and depth Z . In stage 3, we
estimate the normal N , depth Z , and reflectance R. Rendered images EEE from (5) using the
recovered shape and reflectance for stages 2 and 3 are also presented.

comparison in our experiment. The synthesis experiments were quantified by the surface
normal error and the depth error relative to the ground-truths. Meanwhile, the real experi-
ments were evaluated qualitatively.

Parameters in our experiments were set as βs = 10, βg = 0.05, βzn = 10, βzn = 0.01,
βb = 5, βΨ = 0.001, and βc = 0.001. The resolution of natural illumination is 256×128.

5.1 Simulation Experiments
Because the diffusion level of a material and distance from an object to the camera might
affect reconstruction performance, we evaluated the proposed method with synthetic light
field images against variations of (1) the diffusion level of material and (2) the depth from the
object to the camera. The object geometries, reflectance, and natural illumination were taken
from [7], the MERL BRDF database [12], and the light probe gallery created by the Institute
for Creative Technologies of the University of Southern California [30], respectively. The
camera model and geometry were generated by Pbrt [11]. 5× 5 sub-aperture images were
generated with the synthesized light field camera, with the minimum baseline between two
viewpoints being 10 mm. The field of view was 30o and the sub-aperture image resolution
was 640×480. The distance from the object to the camera ranged from 240 to 440 mm.

In the first simulation experiment, we synthesized different BRDFs in terms of the diffu-
sion level by linearly combining BRDFs of steel and white fabric from the MERL database [12],
while the distance from the object to the camera was 400 mm. We used Grace cathedral il-
lumination, which is shown in Figure 3. The performances of the proposed method are
summarized in Figure 4.

Figure 3: Natural illumination.

Citation
Citation
{Johnson and Adelson} 2011

Citation
Citation
{Matusik, Pfister, Brand, and McMillan} 2003

Citation
Citation
{USC Institute for Creative Technologies} 

Citation
Citation
{{Matt Pharr, Wenzel Jakob} and Humphreys} 

Citation
Citation
{Matusik, Pfister, Brand, and McMillan} 2003



NGO ET AL.: REFLECTANCE AND SHAPE ESTIMATION WITH LIGHT FIELD CAMERA 9

Figure 4: Simulation experiment with different
synthesized materials.

Figure 5: Simulation experiment with dif-
ferent distances of the object to the cam-
era.

The results reveal that the proposed method can work with a certain range of diffuse or
specular materials. For an extremely diffuse material, such as fabric, the narrow baseline
between viewpoints is not wide enough to see parallax between sub-aperture images and the
surface normal and depth are thus not recovered so well. The performance improves when
the material is more specular. However, the proposed method does not work well for an
extremely specular material, such as steel. The problem is that we employ a precomputed
reflectance look-up table to accelerate the computation. The limited resolution of the look-up
table cannot deal with extremely specular material with a sharp specular lobe. In the future
work, we plan to employ different techniques to avoid such limitation.

In the second simulation experiment, we carried out a simulation experiment with dif-
ferent distances from the object to the camera. The synthesized images were generated with
blob7 [7], gold metallic paint [12], and Grace cathedral illumination. The performances of
the proposed method are shown in Figure 5.

The results reveal that when the object is far from the camera, the performance is poor
because the parallax is relatively small. The performance improves when the object moves
closer to the camera. However, there is appreciable occlusion between viewpoints when the
object is too close the camera. The situation is similar to that of a wide-baseline multi-view
stereo reconstruction [18]. Fortunately, the problem is not practical for a light field camera
and we do not focus on solving it.
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Figure 6: Real-world experiments: a) examples of captured images, b) reconstruction for a
highly specular plastic bottle, and c) reconstruction for a pottery jar. Input object and light
images were white-balanced. Reflectance function is visualized with a white point-light
source and a sphere of the recovered material.

5.2 Real Experiments

We evaluated the proposed method in real-world experiments with different objects. We
employed a Lytro ILLUM camera to capture and make high-dynamic-range images of ob-
jects, and a Theta S camera [22] to capture natural illumination. The environment of our
experiment is shown in Figure 3.b. The camera focal length was set at 50 mm. The sub-
aperture image size was 625×434. After calibration of the Lytro camera, the baseline from
a viewpoint to its nearest neighbor was about 0.5 mm. Similar to the case in simulation
experiments, we used 5×5 sub-aperture images. An example of 3×3 sub-aperture images is
shown at the left of Figure 2.

We performed real experiments with two objects, a highly specular plastic bottle and a
pottery jar. The results are shown in Figure 6. The results reveal that the surface normals
and reflectance functions are well recovered so that the rendered object images and captured
images are similar. We also see that the material of the bottle is much more specular than
that of the pottery jar. Overall, we find that the proposed method works well with real-world
objects against a narrow baseline of the light field camera.

6 Conclusion and Future Works
We presented the recovery of the shape and reflectance of an object with a light field camera
under natural illumination. The advantage of the proposed method is that it is practical to
deploy in reality with minimal effort to acquire input images and more information on the
object is recovered. We employ a multi-stage algorithm to handle the high complexity. In
experiments, we currently get good results with several real-world materials. In future work,
we plan to improve the quality of reconstruction for more extreme specular materials, such
as a mirror and metal to demonstrate that the proposed method can work well with various
types of material.
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