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Abstract. We propose a new robust estimator for parameter estimation
in highly noisy data with multiple structures and without prior informa-
tion on the noise scale of inliers. This is a diagnostic method that uses
random sampling like RANSAC, but adaptively estimates the inlier scale
using a novel adaptive scale estimator. The residual distribution model
of inliers is assumed known, such as a Gaussian distribution. Given a
putative solution, our inlier scale estimator attempts to extract a dis-
tribution for the inliers from the distribution of all residuals. This is
done by globally searching a partition of the total distribution that best
fits the Gaussian distribution. Then, the density of the residuals of es-
timated inliers is used as the score in the objective function to evaluate
the putative solution. The output of the estimator is the best solution
that gives the highest score. Experiments with various simulations and
real data for line fitting and fundamental matrix estimation are carried
out to validate our algorithm, which performs better than several of the
latest robust estimators.

1 Introduction

Robust parameter estimation is fundamental research in the fields of statistics
and computer vision. It can be applied in many estimation problems, such as
extracting geometric models in intensity images and range images, estimating
motion between consecutive image frames in a video sequence, matching images
to find their similarity, and so on. In these problems, the data contains explana-
tory data, which also includes leverage elements, and a large number of outliers.
The data may also contain several structures, such as various lines or planes
that appear in pictures or range images of a building. Therefore, the common
requirements for a modern robust estimator in computer vision are: robustness
to various high outlier rates (high breakdown point [1]), ability to work with
multi-structural data and good detection of inliers.

In this paper, we present a new robust estimator that has a high breakdown
point, can work with multi-structural data and estimates the correct inlier scale.
Our method relies on a novel inlier scale estimator and a density-based objective
function. The proposed inlier scale estimator finds the most Gaussian-like parti-
tion globally in the residual distribution of a putative solution. This is the main



contribution of our paper. Since we find the best inlier scale for inliers globally,
smoothness of the probability density is not strictly required, and therefore, we
have chosen the histogram method for fast computation.

2 Related Works

Least median squares (LMS) [1] is the most well-known robust estimator in
statistics and computer vision, and can achieve a high breakdown point [1] of up
to 50% of the outliers. However, in a real estimation problem, such as extracting
lines from an intensity image or extracting planes from a range image, where
the outlier rate is higher than 50%, the LMS cannot be used. Some estimators,
however, have a higher breakdown point than 50%. The RANSAC algorithm [9]
and Hough transform [10] are the most popular in this regard. If the scale of
inliers is supplied, RANSAC can reach a very high breakdown point. However,
the drawback of RANSAC is that it needs a user-defined threshold to distinguish
inliers. The Hough transform can also achieve a very high breakdown point if it
is able to manage its large voting space. Certain extensions of the LMS, such as
MUSE (minimum unbiased scale estimate) [2] or ALKS (adaptive least kth order
squares) [3], can be applied with high outlier rates, but these have a problem with
extreme cases, such as perpendicular planes, and are sensitive to small pseudo
structures. Another extension of the LMS is MINPRAN (minimize probability
of randomness) [4], which requires an assumption of the outlier distribution.
This assumption seems to be strict since outlier distribution is assumed with
difficulty. RESC (residual consensus) [5] computes a histogram of residuals and
uses several parameters to compress the histogram. The histogram power is com-
puted as the score for the putative estimate. RESC is claimed to tolerate single
structure data that contains up to 80% outliers, however, it needs many user-
defined parameters to compress the histogram and to detect the inlier distribu-
tion, which reduces its adaptiveness. The pbM (projection-based M-Estimator)
[6][11] is an extension of the M-Estimator that uses projection pursuit and the
KDE (kernel density estimation), and can provide a breakdown point greater
than 50%. However, it only works for linear residual functions, such as linear
regression, or linearized residual functions. Another robust estimator that uses
the KDE is the ASSC (adaptive scale sample consensus) [7]. ASSC assumes that
the inliers are located within some special structure of the density distribution;
practically it detects the first peak from zero and the valley next to the peak to
locate the inliers. ASSC can provide a very high breakdown point, around 80%,
when the correct bandwidth for the KDE is applied. ASSC has subsequently
been improved, resulting in ASKC (adaptive scale kernel consensus) [8], which
has an improved objective function and higher robustness in the case of high
outlier rates. The bandwidth for the KDE in ASKC is computed using a scale
estimate that contains approximately 10% of the smallest residuals. However,
this under-smoothed bandwidth causes the ASKC estimate to have very few in-
liers in the case of data with a low outlier rate, and this reduces the accuracy
even though the breakdown point is still high. In contrast to the pbM, ASSC



or ASKC, our proposed method does not compute the inlier scale (the standard
deviation of noise on the inlier residuals) directly from the estimated probability
density. Since it roughly describes the true distribution and since the location of
a local peak, global peak or local valley in the density estimation depends on a
smoothing bandwidth, we find the best inlier scale globally by matching with a
Gaussian distribution.

3 Adaptive-scale Robust Estimator

3.1 Problem Preliminaries

Assume the estimation of a structure model with the constraint:

g(θ, X) = 0, (1)

where θ is the parameter vector of the structure, and X is an explanatory data
point. Our estimation problem can then be described as follows.

– Input : N observed data points Xi, i = 1..N , including both inliers and
outliers.

– Output : Parameter θ that describes the data.

In a real problem, each inlier Xt is affected by an unknown amount of noise.
Therefore, the actual parameter θ cannot be recovered, and some approximation
of θ needs to be estimated. In evaluating whether an approximate estimate θ̂ is
good or bad, the estimator can only rely on the statistics of the error for each
data point. This error is called the residual, and is a non-negative measure in the
proposed method. For each model estimation problem, there are numerous ways
of defining the residual function, including using the original constraint function
(1). Generally, however, the residual is defined as:

rθ̂ = f(θ̂, X). (2)

The standard deviation of these inlier residuals is called the “inlier scale”, and is
denoted by σθ̂. The problem is that σθ̂ is not known, and therefore, an inlier scale
estimator tries to estimate it. This estimate is denoted by σ∗

θ̂
. Once the inlier

scale has been determined, the threshold tθ̂ = τσ∗
θ̂

can be decided to distinguish
inliers from outliers.

Given an estimate θ̂, and an inlier scale σθ̂, the probability density function is
denoted as Pθ̂(r). Pθ̂(r) is normalized using the inlier scale σθ̂ and we denote this
normalized density function as P s

θ̂
( r

σθ̂
). As the estimate θ̂ approaches the correct

value of θ, the distribution of inliers resembles more closely the ideal distribution.
We call the ideal distribution when θ̂ = θ, the distribution model. The density
function for the standardized distribution model, with a sample deviation of 1, is
denoted as G(ξ), ξ ≥ 0. In this case, the standardized distribution model is the
standard Gaussian distribution for the absolute of variables, denoted by AGD
and described in Fig.1.



The proposed estimator works with data with multiple structures, and there-
fore, the residual distribution Pθ̂(r) has multiple modes. The mode near the ori-
gin is assumed to belong to the inlier structure, while the others belong to the
outlier structures. Therefore, we cannot use the whole distribution model G(ξ)
with 0 ≤ ξ < ∞ for matching. Only the portion of G(ξ) with 0 ≤ ξ ≤ κ is
assumed as the inlier distribution model and is used for matching. κ is selected
so that the range 0 ≤ ξ ≤ κ contains more than 95% of the population; in this
study, for example, we use κ = 2.5.

3.2 Proposed Robust Estimator

In most previous works, the authors have assumed that the inlier residual distri-
bution is a Gaussian distribution. This is also true for our research. We propose
an estimator that uses distribution matching to find the best inlier scale from
the distribution of all residuals.

Inlier Scale Estimation by Matching the Residual Distribution to the
Distribution Model The inlier scale is estimated by searching for the best fit
between a segment of the residual distribution and the AGD. The segment of
the residual distribution used for matching starts from zero. Then, the residual
scale of the first structure is detected regardless of the outlier structures. The

matching error between the density function P s
θ̂
(

ri
θ̂

σ ) with assumed inlier scale σ

and the AGD density function G(
ri

θ̂

σ ) is defined by a simple minimization:

eθ̂(σ) = min
k

Average
0≤ri

θ̂
≤κσ

{(P s
θ̂
(
ri
θ̂

σ
)− kG(

ri
θ̂

σ
))2}, (3)

where k is some scale of the AGD density function, ri
θ̂

is the ith residual and
κ indicates the portion of the AGD used in the matching. Then, the best scale
of inlier residuals σ∗

θ̂
is estimated by searching the scale that gives the smallest

matching error. This is summarized as

σ∗
θ̂

= argmin
σ

{eθ̂(σ)}. (4)

Inliers are then distinguished using the threshold tθ̂ = κσ∗
θ̂
.

In our algorithm, to compute the probability density of the residual from
an estimate θ̂, we apply the well-known histogram method, although the KDE
can also be used. A histogram is simple and as residual sorting is not required,
in contrast to most previous estimators, it gives a very low computational cost.
Searching for the best inlier scale σ∗

θ̂
is graphically depicted in Fig.1.

Bin-width for the histogram is selected in the same way as in previous works
[7][8]. A widely used bin-width [13] for robust estimators is:

b̂θ̂ = (
243

∫ 1

−1
K(ζ)2dζ

35N(
∫ 1

−1
ζ2K(ζ)dζ)2

)

1
5

ŝθ̂, (5)
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Fig. 1. Demonstration of searching the inliers scale. Data contains two actual parallel
lines. The inlier scale is obtained by finding the smallest matching error.

where K is some kernel, such as the popular Gaussian kernel or Epanechnikov
kernel, and ŝθ̂ is the smallest window containing 15% of the smallest residuals.

Objective Function Inspired by the use of the KDE in the pbM-Estimator
[11] and ASKC [8], we also apply it in our adaptive objective function:

F (θ̂) =
1

Nhθ̂

N∑

i=1

K(
ri,θ̂

hθ̂

), (6)

where hθ̂ is adaptively estimated and K is a kernel such as the Gaussian kernel
KG or Epanechnikov kernel KE . The KDE objective function evaluates how
densely the residuals are distributed at zero using the kernel’s window. In our
case, the window of kernel K is hθ̂, which tightly fits the estimated inliers,
and therefore, the objective function gives the density measured at zero for the
estimated inliers only. For KG, hθ̂ = σ̂∗

θ̂
and for KE , hθ̂ = κσ̂∗

θ̂
.

3.3 Estimation Algorithm Summary

We summarize the proposed algorithm below.

(a) Create a random sample and then estimate the solution parameters θ̂.
(b) Estimate all the residuals of the data points given the parameters θ̂.
(c) Estimate the bin-width by (5), and then compute histogram Pθ̂.
(d) Estimate the inlier scale as summarized by (4).
(e) Estimate the score using the objective function (6).
(f) Update the best solution.
(g) Repeat from (a) if not terminated.
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Fig. 2. Experiment on outlier rates
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 Fig. 3. Experiment on
noise scales

4 Experiments

We carried out several experiments to validate our algorithm in linear and non-
linear estimation problems: plane fitting, line fitting and fundamental matrix
estimation. First, we used a simulation to understand the various aspects of the
algorithm, and then actual experiments were performed with real data to vali-
date the algorithm in various real situations. For the plane and line fitting (linear
residual) problems, we compared our algorithm with several popular robust es-
timators: the pbM, LMedS, ALKS, ASSC, and ASKC. For the fundamental ma-
trix (using non-linear residual) estimation, we used LMedS, ASSC, ASKC, and
ALKS for comparison, since the pbM was originally proposed for linear robust
regression problems. ALKS is very unstable when k is small, and therefore, in
our experiments we only started searching for k when it was greater than 15% of
the total number of data points. The Epanechnikov kernel was used in the KDE
as well as the related objective functions. All algorithms were supplied with the
same set of random sampling hypotheses and no optimization. For the proposed
estimator, κ was selected such that the portion of the AGD for matching con-
tained about 97% of the population; κ = 2.5 was used for all the experiments.
The following criteria were used for validating the proposed estimator:

– Robustness through various outlier rates and noise scales.
– The ability to work with data with multiple structures.

4.1 Linear Fitting

In this problem, the estimator must extract the correct line or plane from a
dataset that contains single or multiple structures with the appearance of ran-
dom outliers. The experiments were carried out using various popular analytic
simulations for the robust estimator. Given an estimate θ̂ = (â, b̂, ĉ, d̂), the esti-
mation error is defined as:

Errorθ̂ =
√

(a− â)2 + (b− b̂)2 + (c− ĉ)2 + (d− d̂)2, (7)

where (a, b, c, d) are ground-truth parameters. The normal vector of each plane
is normalized such that

√
a2 + b2 + c2 = 1,

√
â2 + b̂2 + ĉ2 = 1.



0

100

200

300

400

500

0 100 200 300

Line1

Line2

Outliers

 

-200 -500 

x 

0 200 400 600 8000

500 
1000

0 
100

200

300

400

500

600

700

800

z 

y 

a) Parallel lines    b) Four steps 

Fig. 4. Multiple data examples: (a) parallel lines and (b) data with 3D steps

Single Structure with Various Outlier Rates: We simulated a random
dataset containing a random 3D plane with 500 random points within a 3D
volume [0, 0, 0, 1000, 1000, 1000]. Some of the inlier points were replaced by
outliers with random coordinates, thereby keeping the total number of data
points as 500. The inlier points were contaminated by Gaussian noise with scale
σG=8. The average results for 100 such datasets are shown in Fig.2. Fig.2(a)
shows the estimation errors for robust estimators and Fig.2(b) shows the ratio
between the estimated inlier scale and the actual inlier scale. The proposed
estimators, pbM, ASSC and ASKC, have similar breakdown points, and they can
work with very high outlier rates, up to 90%. However, with regards accuracy
of the estimation and estimated inlier scale, the proposed estimator gives the
best results. The estimated inlier scale is close to the actual inlier scale, with the
ratio between them almost 1.

Single Structure with Noise Levels on Inliers: The dataset was set up
in the same way as in Section 4.1 for line fitting, but the outlier rate was fixed
at 60%, and the noise scale σG varied between 1 and 52. The average results
for 100 datasets are shown in Fig.3. These results show that the performance
of each estimator decreased as the noise scale increased. However, the proposed
estimator was highly resistant to the high noise scale.

Parallel Lines with Varying Distances: This problem demonstrates the
ability of line estimation with the appearance of multiple structures. A dataset
containing two parallel lines is used in this experiment. The estimator must
then discriminate the two lines and extract a line correctly from the data. The
experiment was carried out with varying distances between the two parallel lines:

Line1 : 2x− y + d = 0, where d = 20, 30, 40, ...210
Line2 : 2x− y = 0.

Each dataset contained 450 random points (outliers); 150 points on line1 and
300 points on line2 were generated randomly for each trial in this experiment.
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Fig. 5. Estimation errors for data (a) with parallel lines and (b) with steps

Gaussian noise with a zero mean and σG=8.0 was added to the points on each
line, whilst keeping the range of all points within the rectangle (0, 0, 62.5σG,
62.5σG). An example of a random dataset is shown in Fig.4(a) with d = 80. The
average results from 100 trials for the estimation error and number of estimated
inliers are shown in Fig.5(a). When the two lines are close together, d = 20, they
are almost mistaken for one line, with all estimators having a similar accuracy.
When the lines are further apart, the performance of ALKS is the worst, as it
only manages to estimate correctly once the two lines are very far apart. Since
the actual outlier rate for estimating any line is greater than 50%, LMedS pro-
duces worse results as the two lines move further apart. However, our proposed
algorithm retains a similar accuracy rate irrespective of the distance between
the lines. The pbM, ASSC and ASKC have the same robustness as the proposed
estimator, but with lower accuracy.

Multiple Steps with Varying Noise Levels: In this experiment, step data
consisting of four planes was set up as shown in Fig.4(b). The parameters of the
actual planes are:

Plane 1 : z − 100 = 0
Plane 2 : z − 200 = 0
Plane 3 : z − 300 = 0
Plane 4 : z − 400 = 0

The dataset for evaluation consisted of 240 random points for each plane and
240 random outliers. Each data point on a plane was contaminated by Gaussian
noise with σG. The experiment was carried out to test all the estimators with
different values of σG. With larger values of σG, the four planes are closer and
may become fused. The results are illustrated in Fig.5(b), which gives the average
of the results for 100 such randomly generated datasets.

The pbM did not perform well in this experiment as it mistook the four
planes for the same structure, resulting in the estimated number of inliers being
about four times more than the actual number of inliers for each plane. LMedS



did not perform well either, as the outlier rate is high for the estimation of
any plane. ASSC and ASKC were able to estimate correctly only at low noise
levels. The proposed method was able to function correctly at slightly higher
noise levels, but then it also became confused and estimated the four planes as
a single plane. Since ALKS is well known for its instability and sensitivity to
small pseudo structures, we limited the size of possible structures for ALKS,
with the estimated structure being larger than 15% of the data. Hence, ALKS
was able to function at much higher noise levels. In this case its sensitivity was
an advantage.

4.2 Fundamental Matrix Estimation in Real Video Sequences

   

Frame t-1 Frame t 

Fig. 6. One pair of images in a sequence; inliers (image features in red) and outliers
(image features in green) are output by the proposed estimator

In these experiments, real video sequences were captured in an indoor envi-
ronment with an omnidirectional vision sensor. Examples of the captured images
are shown in Fig.6. The sensor consisted of an omnidirectional mirror, a telecen-
tric lens and an imaging sensor. The camera was mounted on a rotary stage and
controlled by a PC, which translated the camera whilst it was being rotated.
For each pair of images, 200 Harris image features were detected on the first im-
age and tracked on the second image to obtain the feature correspondence pairs
using the KLT feature tracker [12] implemented in OpenCV. The fundamental
matrix between a pair of consecutive images was computed using the seven point
algorithm [16] with these feature correspondence pairs. The residual function is
defined in [15]:

r = f(F , x, x
′
) =

∣∣∣x′T Fx
∣∣∣
√

1
‖ Fx ‖2 +

1
‖ F T x

′ ‖2 , (8)

where F is the fundamental matrix and (x, x
′
) a feature correspondence pair.

Since we cannot compare the estimated fundamental matrix with a ground-
truth fundamental matrix, we compute the error as the standard deviation of



only inlier residuals of the estimated fundamental matrix θ̂
∗

= F̂
∗
:

Error ˆF
∗ =

√√√√ 1
M

M∑

i=1

(r
i,

ˆF
∗)2, (9)

where M is the number of inliers. This error computation relies on how the
solution fits the motion data: a better fit produces smaller residuals for inliers,
and vice versa. In a simulation, the actual inliers are known and thus M is known.
In a real experiment, the error is computed for the M smallest residuals (which
are considered inliers), with M assigned manually after checking the actual data.

For each video sequence, about 50 images were captured, whilst ensuring the
same rotation between consecutive images. The performance of all the estimators
tends to deteriorate with a greater degree of rotation, since the KLT tracker is less
accurate under greater rotation. Therefore, we used three video sequences with
different rotation settings. These video sequences are referred to as V ideo 4deg,
V ideo 14deg and V ideo 18deg for rotation speeds of 4 degrees/frame, 14 de-
grees/frame, and 18 degrees/frame, respectively. We computed the error by (9)
and M was set independently for each video sequence after randomly checking
five pairs of images within each video sequence. The average number of true in-
liers and the assigned value for M for each video sequence are given in Table.1.
The average errors and number of estimated inliers for 100 executions of each
video sequence are given in Table.1. For low outlier rates, LMedS gave the best
accuracy. However, for a high outlier rate in V ideo 18deg, LMedS performed
worst. The estimation error of the proposed method is quite similar to that of
ASSC. With regard to the number of estimated inliers, the proposed method
gave the best results, the number of estimated inliers was close to the actual
number of inliers.

Table 1. Fundamental matrix estimation error and number of estimated inliers for
real video sequences

Video sequence Video_4deg Video_14deg Video_18deg 

Number of true inliers 187.7 102.7 72.2 

Assigned M 160 90 60 

Fitting error /  
No est. inliers 

   

Proposed method 0.00152 150.7 0.00377 86.4 0.00382 65.5 

ASSC 0.00156 36.7 0.00377 38.7 0.00385 39.9 

ASKC 0.00184 22.7 0.00474 23.6 0.00507 23.9 

ALKS 0.00903 66.8 0.01955 98.7 0.02127 64.5 

LMedS 0.00125 101.0 0.00349 101.0 0.00574 101.0 

 

Fig.7 shows the estimated distributions of residuals (from both inliers and
outliers) for the estimators with the sequence V ideo 18deg. For each estimator,
the distribution was computed as the average of the residual distributions for
the solutions for all pairs of images. The graph shows that the distributions and
the Gaussian are highly correlated regardless of the estimator.
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Fig. 8. Processing time for all estimators

4.3 Computational cost

We simulated the relation between processing time and the number of data
points, the average results of which are shown in Fig.8. In this simulation, a
linear fitting problem for a plane was used and all the estimators were given
the same set of random samples. The graph shows that overall the proposed
estimator gives the fastest computational time, especially for large data.

5 Discussion and Conclusions

In this paper, we proposed a novel highly robust estimator for the estimation
problem in computer vision that deals with data with high outlier rates and
multiple structures. Our algorithm does not need any prior information about
the inlier scale, as this is estimated adaptively by globally searching for the
best match of the Gaussian distribution and the residual distribution. Thus, the
inlier residual distribution is tightly estimated, resulting in robustness and high
accuracy for the proposed algorithm. The validity of the proposed algorithm was
confirmed by experiments with several different estimation problems in various
situations.

Without a smoothing parameter, such as bin-width in the proposed estima-
tor and bandwidth in ASSC, the residual statistics are unstable, especially for
a small set of residuals. This reduces the robustness of an adaptive robust esti-
mator, as is the case in ALKS. ALKS tends to extract smaller structures that
have a distribution similar to the Gaussian distribution. However, in a small set
of residuals, this distribution is likely to occur. Using a smoothing parameter in
the residual density estimation can make an adaptive-scale estimator more ro-
bust, as is the case in ASSC, ASKC, and pbM. However, the problem lies in how
large this parameter should be. For example, in ASSC and ASKC, the estimated
inlier scale is correlated with the bandwidth but not with the actual outlier rate.
The inlier scale is frequently underestimated for data with low outlier rates. The
proposed estimator is designed to estimate the inlier distribution tightly, and



therefore the inlier scale is always close to the actual inlier scale regardless of
the outlier rate.

In current method, we assume the Gaussian distribution for inlier residuals.
In future, we would like to improve the algorithm for application to distribution
models other than the Gaussian.
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