Sharpening Transmissive Images using Parallel High Frequency Illumination Kenichiro Tanaka^{*1}, Yasuhiro Mukaigawa^{*1}, Yasuyuki Matsushita^{*2}, Yasushi Yagi^{*1} ^{*1} Osaka University, ^{*2} Microsoft Research Asia

Transmissive Image

- Visualization of the inside for
 - Security
 - Medical care
 - Industry
- Unclear images due to scattering

Separation of Transmissive and **Scattered** lights

We combine three clues for sharpening

Separation Idea

Food

- Direct transmission
 - Keeps incident patterns
- Scattered light
 - Low-pass filter

Optical System

Both camera and projector mount telecentric lenses

Experimental Results Metallic object in milky water

Formulation

Shift the pattern

Maximum and Minimum Intensities are obtained

Fluctuation of the intensity

- = Direct transmission
- Observation

Numerical Evaluation

A metallic wire in milky water (2.2 % density)

Ground truth: in pure water

Target Object Ground Truth

White pattern White pattern in visible light in near infra-red

A metallic wire in milky water for various densities

Density	1.9%	2.2%	2.5%	2.8%	3.1%
Normal Illumination			0		
Correlation	0.98	0.68	0.30	0.06	0.01
Proposed Method					
Correlation	0.95	0.95	0.84	0.21	0.03