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Abstract— This paper describes a new method to automati-
cally calibrate lens distortion of wide-angle lenses. We project
structured-light patterns using a flat display to generate a
map between the display and the image coordinate systems.
This approach has two advantages. First, it is easier to take
correspondences of image and marker (display) coordinates
around the edge of a camera image than using a usual marker,
e.g. a checker board. Second, since we can easily construct a
dense map, a simple linear interpolation is enough to create
an undistorted image. Our method is not restricted by the
distortion parameters because it directly generates the map.
We have evaluated the accuracy of our method and the error
becomes smaller than results by parameter fitting.

Index Terms— Calibration of lens distortion, structured-
light scanning, non-parametric

I. INTRODUCTION

A wide field of view is often required for tasks such
as surveillance and robot navigation that involve observing
the environment. There are several approaches to acquire
the necessary wide field of view. For example, using wide-
angle lenses [1], omnidirectional mirrors [2], [3], a moving
camera [4] or a multiple camera system [5].

Using a wide-angle lens is a simple solution for such
applications. However, images through a wide-angle lens,
such as a fish-eye lens, are greatly distorted. Since such
distortion is not desirable for image processing and needs
to be removed, the projection model is handled like a pin-
hole camera model.

Several approaches have been proposed to calibrate lens
distortion. Most usually assume distortion models that
contain radial and tangential distortions. The latter effect is
also called decentering distortion [6], [7]. If (xd, yd) is a
point of a distorted image and (xu, yu) is the corresponding
point of the undistorted image,

xu = (1 +
∞∑

i=1

Kir
2i)xd + (1)

(2P1x̄ȳ + P2(r2 + 2x̄2))(1 +
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2i)
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2i)yd +

(P1(r2 + 2ȳ2) + 2P2x̄ȳ)(1 +
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Pi+2r
2i),

where x̄ = xd − Cx, ȳ = yd − Cy, r2 = ȳ2 + x̄2. Cx and
Cy are the optical center. Ki and Pi are the parameters of
the radial and tangential distortions, respectively. Actually,
the higher order terms on the right-hand of (1) are ignored.
For example, (1) is approximated as follows [1], [7]:

xu = (1 + K1r
2 + K2r

4)xd + (2P1x̄ȳ + P2(r
2 + 2x̄2)) (2)

yu = (1 + K1r
2 + K2r

4)yd + (P1(r
2 + 2ȳ2) + 2P2x̄ȳ),

Some studies [8], [9], [10] have used known calibration
markers to estimate distortion parameters. In contrast,
nonmetric methods [1], [11], [12], [13] have also been
proposed. These methods estimate the distortion parameters
by fitting straight lines in the scene and their corresponding
curved lines in the image, which then must be projected as
straight lines in the perspective projection.

The above methods that estimate the distortion parame-
ters are restricted by the definition of their parameters. If
a method only estimates radial distortion, it cannot recover
tangential distortion. Even if all the parameters in (2) are
estimated, the error becomes large at the points that are
far from the optical center. On the other hand, some other
non-parametric approaches do not use these parameters.
Green et. al. [14] applied local affine transformations to
map grid elements in the distorted image to grid elements
in the undistorted image. However, since the grid patterns
are sparse and the transformations are linear, the sampling
is not smooth. Goshtasby [15] modeled the distortion
parameters using Bezier patches. Though the sampling
becomes smooth, the error still remains since the control
vertices are sparse. Ying and Hu [16] used markers attached
on a hemisphere and generated a non-parametric imaging
model for distortion correction.

In this paper, we propose a novel method for calibrating
lens distortion by projecting dense markers. Our method
obtains the relationships between distorted and undistorted
points for all pixels. Therefore, we can straightforwardly
generate an undistorted image without needing to estimate
the distortion parameters. The undistorted image becomes
the one generated by the perspective projection. To gen-
erate dense markers, we utilize a flat display, such as a
liquid crystal display (LCD) and a plasma display panel
(PDP). Since these displays are planar and have very high
resolution, we can generate dense mapping of the scene and
image. This approach has two advantages. First, if we use
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Fig. 1. Calibration of distortion by structured-light scanning

a marker as a world coordinate, e.g. a checker board, it is
not easy to find the correspondence of image and marker
coordinates around the edge of a camera image because
of lens distortion. However, this method easily takes corre-
spondences of image and marker (display) coordinates even
around the edge of a camera image. Second, because of the
dense sampling of markers, a simple linear interpolation is
enough to generate a smooth image.

In Section II, we describe a method of acquiring dense
markers using a flat display and of calibration using
the acquired markers. We experiment with our proposed
method and estimate its accuracy in Section III. Finally
we summarize this paper in Section IV.

II. CALIBRATION BY STRUCTURED-LIGHT SCANNING

Instead of estimating the parameters of distortion, Our
method creates a map between the distorted and undistorted
points for all pixels. As it is necessary to observe many
markers to create such a dense map, we use a structured-
light technique to generate dense markers. This technique is
used by structured-light range finders [17], [18], [19]. For
range measurement, the structured lights are projected onto
a target object. In this paper, the camera to be calibrated
directly observes the structured lights.

Fig. 1 shows the basic outline of our proposed method.
We use a flat display such as an LCD to project the light
patterns. The camera observes two series of light patterns,
that are parallel to the x- or y-axis of the display coordinate
system. Since each pixel is coded by time-multiplexing, the
position of the pixel in the display coordinate system is
computed. By mapping each pixel onto the corresponding
position in the display coordinate system, the undistorted
image can be obtained.

A. Spatial Coding

In our implementation, we use Gray codes [20] as the
structured-light patterns. The advantage of using Gray code
is that the number of images required is small. Fig. 2 shows
encoding by a Gray code. By decoding the acquired light
pattern, we compute the coordinate along the axis that is
parallel to the stripe of the pattern. Since we use two series
of patterns that are perpendicular to each other, we obtain
the mapping function f from the display coordinate system
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Fig. 2. Spatial coding by a Gray code
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to the image coordinate system of the camera:

(x, y) = f(i, j), (3)

where (i, j) is the point in the display and it is projected
onto (x, y) in the camera image.

To estimate the mapping function, our method consists
of the following steps:

1) Compute with subpixel accuracy the intersecting
points of stripes along the column and row axis.

2) Find the crossing points of perpendicular stripes.
3) Interpolate values to determine the projected points

for all (i,j).
1) Compute Intersecting Points with Subpixel Accuracy:

To improve the accuracy of the matching between the dis-
play and image coordinate systems, we measure the edges
between adjacent stripes using sub-pixel coordinates. Thus,
the display coordinate (i, j) is assigned to the edges of the
stripes. Fig. 3 shows the detection of an edge with sub-
pixel accuracy. First, we project the positive and negative
patterns. The interpolated edge exists at the intersecting
position s of the stripe profiles. s is computed as follows
[18]:

s =
A − B

(A − B) + (C − D)
, (4)

where A, B, C and D are the intensities of pixels. We find
the intersecting positions along both the column and row
axes of the image coordinate.
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Fig. 4. Compute the crossing point of the edges of the perpendicular
stripes.

Fig. 5. Stripes cannot be recognized in the left part.

2) Find Crossing Points of Stripes: Next, we find the
crossing point (x, y) of the perpendicular stripes in the
image coordinate, since it is the projected point of (i, j)
in the display coordinate. Fig. 4 shows two examples of
crossing stripes. The edges of the stripes are indicated
by dotted lines. Since we have computed the intersecting
points along the column and row axes, we compute the
crossing point by linear interpolation of the intersecting
points.

We compute the four subpixel coordinates, s1, s2, t1 and
t2, by (4). s1 and s2 are the coordinates for the stripes
along i-axis of the display coordinate, and t1 and t2 are
those along j-axis of the display coordinate. In Fig. 4(a),
the crossing point (x(i,j), y(i,j)) = f(i, j) is computed by
solving the following equation for the parameters a and b:

p1 + a(p2 − p1) = p3 + b(p4 − p3), (5)

where p1, p2, p3 and p4 are the position of the intersecting
points. Though there are some cases of the crossing points
such as Fig. 4(b), they are also computed in similar manner.

3) Determine Projected Points for All Display Points:
If the width of a stripe is very narrow, the edge cannot be
detected as shown in Fig. 5. In such a case, it is impossible
to compute f(i, j) for all (i, j). Thus, we interpolate it
by using the neighborhood. In Fig. 6, The corresponding
positions x1 and x3 for i1 and i3 are found. However, x2 for
i2 is not computed because the edge of i2 is not detected.
Then, we interpolate x2 by using x1 and x3 linearly.

B. Normalization of Coordinate

To generate an undistorted image, it is necessary to
normalize the mapping function f(i, j). The reasons are:
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Fig. 6. The corresponding coordinate x2 for i2 is interpolated by using
x1 and x3.

1) the resolutions of image and display are different, and
2) the display may not be perpendicular to the optical axis
of the camera.

In the neighborhood of the image center, we can assume
that the distortion is quite small and so is negligible. Thus,
a 3 × 3 matrix H exists, which satisfies

a




x
y
1


 = H




f−1
i (x, y)

f−1
j (x, y)

1


 , (6)

where (f−1
i (x, y), f−1

j (x, y)) = f−1(x, y) and a is an
arbitrary scale factor. H can be solved if more than three
points are given in the neighborhood of the image center.

Now, we define a new mapping function g(u, v) as
follows:

(x, y) = f(H−1(u, v, 1)T ) = f(h(u, v)) = g(u, v), (7)

where h(u, v) = (i, j) which satisfies a(i, j, 1)T =
H−1(u, v, 1)T . Because of the normalization, the resolu-
tion around the image center does not change after applying
g(u, v).

C. Mapping of Undistorted and Distorted Images

Since we only measure the correspondences of the
display and image coordinates on the edges of the stripes,
they are not defined for all pixels of the undistorted image.
However, we measure them densely enough to interpolate
them by simple linear interpolation.

If a point (u, v) of the undistorted image is transformed
as

(i + ∆i, j + ∆j) = h(u, v), (8)

where i and j are integers and 0 ≤ ∆i < 1, 0 ≤ ∆j < 1,
the corresponding point of the camera image is computed
by bilinear interpolation as follows:

(x, y) = (1 − ∆i)(1 − ∆j)f(i, j) (9)
+∆i(1 − ∆j)f(i + 1, j)
+(1 − ∆i)∆jf(i, j + 1)
+∆i∆jf(i + 1, j + 1).
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Fig. 7. Projecting structured-light pattern to a camera of an endoscope.

Then, g(u, v) for all (u, v) can be computed by (8) and
(9).

III. EXPERIMENTS

We now evaluate the accuracy of our method. To project
structured-light patterns, we used a 20.1-inch flat panel
LCD with 1600 × 1200 pixels and 0.255mm pixel pitch.
The maximum view angle is ±88◦. The number of images
in each series is 11. Thus, the size of display coordinate
system is 211 × 211.

We first experimented with an endoscopic camera. The
image angle is 140◦ (diagonal). The experimental set-up is
shown in Fig. 7. Since the resolution of the camera image
(676× 672 pixels) is lower than the display, the lower bits
of Gray codes are not recognized. Thus, we interpolate
the corresponding points as described in Section II-A. Fig.
8 shows the generation of the undistorted image from a
camera image of the endoscope. Each correspondence of
coordinates are computed by f(i, j) and h(u, v). The left
image is an input camera image and the middle image is
the corresponding area in the display coordinate. The right
image is the generated undistorted image by normalization,
the size of which is (1736 × 1736 pixels). It successfully
takes correspondences of image and display coordinates,
even around the edge of a camera image.

To evaluate the accuracy, we estimate error by fitting a
line in the undistorted image, because a straight line in the
scene should be straight in the undistorted images. In Fig.
9, we compare three images: (a) a camera image, (b) the
undistorted image by our method, and (c) the undistorted
image by parameter fitting. The stripe pattern in Fig. 9 is
not used to compute the correspondence of coordinates.
We use the camera calibration function of OpenCV [21]
for parameter fitting and the parameters are defined as (2).
By fitting dotted lines in Fig. 9 to straight lines, the RMS
errors become (a) 16.6 pixel, (b) 0.83 pixel, and (c) 1.18
pixel. Thus, the results from our method are better than the
results of parameter fitting.

Next, we used a digital still camera, a Nikon D70, and
a wide-angle lens, an AF DX Fisheye Nikkor ED 10.5mm
F2.8G. The size of acquired image is 3008 × 2000 pixels
and the image angle is 180◦ (diagonal). The experimental
set-up and the acquired images of the patterns are shown

(a) (b)

Fig. 10. (a) Experimental set-up for projecting structured-light patterns
with D70, and (b) acquired images of structured-light patterns.
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Fig. 12. The mapping result i = f−1
i (x, y) by structured-light patterns

without subpixel estimation. Bottom: a zoom-up of the central area.

in Fig. 10. The distance between the camera and display
is about 3cm.

Fig. 11 shows examples of camera images and undis-
torted results. Fig. 11(a) is the result of the lower image of
Fig. 10(b). The size of the undistorted image is 5328×4288
pixels. Fig. 11(b) is an example of the camera image and
Fig. 11(c) is the undistorted result. Our method successfully
generates undistorted images.

Fig. 12 shows an example of the relationship in (i, j) =
f−1(x, y) without subpixel estimation. Since the image
resolution is higher than the display, it is a stepwise
function around the image center. However, the function
f(i, j) becomes smooth since it is computed with subpixel
accuracy by (4) and (5) (see Fig. 13).
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Fig. 9. Comparison of distorted and undistorted images: (a) a camera image, (b) the undistorted image by our method, and (c) the undistorted image
by parameter fitting.

(a) (b) (c)
Fig. 11. Distorted and Undistorted images of D70: (a) the undistorted image of Fig. 10(b), (b) a distorted camera image and (c) the undistorted image.

IV. CONCLUSION

This paper described a new method to automatically
calibrate lens distortion of wide-angle lenses. Calibration
of lens distortion is necessary for some geometrical anal-
yses, for example, image mosaicing and three dimensional

modeling. We project structured-light patterns using a flat
display to generate a map between the display coordinate
system and the image coordinate system. This approach has
two advantages. First, since it is easy to take correspon-
dences of image and display coordinates even around the
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Fig. 13. The interpolated function x = fx(i, j) by structured-light
patterns. Bottom: a zoom-up of the central area.

edge of a camera image, our method successfully generates
an undistorted image from a camera image with large
distortion. Second, since we can easily construct a dense
map, a simple linear interpolation is enough to create an
undistorted image. Our method is not restricted by the
distortion parameters because it directly generates the map.
We have evaluated the accuracy of our method and the error
is smaller than results from a parameter fitting method.
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