
Parallel Processing of Range Data Merging

Ryusuke Sagawa 1 Ko Nishino 1 Mark D. Wheeler 2 Katsushi Ikeuchi 1

1 Institute of Industrial Science, Univ. of Tokyo 2 CYRA Technologies, Inc.

7-22-1 Roppongi Minato-ku, 8000 Capwell Drive

Tokyo, JAPAN 106-8558 Oakland, CA 94621

fsagawa,kon,kig@cvl.iis.u-tokyo.ac.jp mdwheel@cyra.com

Abstract

This paper describes a volumetric view-merging al-

gorithm that generates a consensus surface of an object

from its range images. Our original method merges a

set of range images into a volumetric implicit-surface

representation, which is converted to a surface mesh

using a variant of the marching-cubes algorithm. We

propose the method that increases the computation and

memory e�ciency for computing signed distances and

the method of parallel computing on a PC cluster. Since

our method permits a reduction in the data amount

allocated in memory, the closest point is searched ef-

�ciently; this allows us to increase the number of the

parallel traversals and to reduce the computation time.

We describe the following two algorithms which are

complementary in terms of the e�ciency of CPUs and

memory usage: distributed allocation of range data

and parallel traversal of partial octree. By adjusting

them according to the system speci�cation, we can build

the model e�ciently by a PC cluster. We have imple-

mented this system and evaluated its performance.

1 Introduction

We have been developing techniques to automat-
ically create virtual reality models through observa-
tion of real objects; we refer to these techniques as
modeling-from-reality (MFR). In order to explore un-
foreseen technical di�culties and to further extend our
MFR techniques by solving these di�culties, we have
begun a project to model Japanese cultural heritage
objects through these MFR techniques[1].

Some of Japanese cultural heritage objects are large,
but their shapes may be intricate. Thus, the models
of these objects' shapes must contain huge amounts
of data. In our previous experiments in modeling
small, indoor objects, we did not have to consider
the computation and memory requirements to build

these models. However, building a model of a huge
amount of data necessitates our taking these require-
ments into account. In this paper, we describe our
proposed method for modeling the shape of huge, pos-
sibly intricate objects.

After scanning the shape of an object by using a
range sensor and then aligning all range images into
the same coordinate system, our original method[2]
converts a set of range images into a volumetric implicit-
surface representation, It then obtains a surface mesh
using a variant of the marching-cubes algorithm[3].
Unlike previous techniques[4, 5, 6] based on implicit-
surface representations, our method estimates the signed
distance to the object surface by �nding a consensus
of locally coherent observations of the surface.

Several approaches which are not based on implicit-
surface representation have been proposed [7, 8, 9].
These algorithms perform poorly if the surfaces are
slightly misaligned or if there is signi�cant noise in
the data.

There are some previous researches which imple-
ment the marching-cubes algorithm in a parallel man-
ner [10, 11]. To reduce the computation time for merg-
ing range images, the signed distance should be also
computed in a parallel manner.

The most costly part of the computation of our
method is �nding the consensus surface to compute
the signed distance. To increase the computation and
memory e�ciency, we propose a method which reduces
the amount of data to be searched, around which point
the signed distance is computed.

We utilize octrees to represent volumetric implicit
surfaces for e�ectively reducing the computation and
memory requirements of the volumetric representation
without sacri�cing the accuracy of the resulting sur-
face.

To further ease this size problem, we have devel-
oped parallel software that runs on a PC cluster to
handle the huge amount of data. The parallel soft-
ware consists of the following two components: 1. Dis-

0.3 0.9

0.5

0.50.5

0

0.51

1.5

surface

outside
surface

inside
surface

Figure 1: Zero-crossing interpolation from the grid
sampling of an implicit surface

tributed allocation of range data. 2. Parallel Traversal
of partial octree.

In the following sections, Section 2 describes our
original merging algorithm. Section 3 explains the
method to increase the computation and memory e�-
ciency. In Section 4, the parallel merging algorithm is
shown. Finally, the performance evaluation is shown
in Section 5.

2 Data Merging

2.1 Volumetric Modeling and Marching
Cubes

Recently, the marching-cubes algorithm[3] has pro-
pelled volumetric modeling beyond the con�nes of \blocky"
occupancy grids. Instead of storing a binary value in
each voxel to indicate whether the voxel is empty or
full, the marching-cubes algorithm requires that the
data in the volume grid are samples of an implicit
surface. In each voxel, we store the signed distance,
f(x), from the center point of the voxel, x, to the
closest point on the object's surface. The sign indi-
cates whether the point is outside, f(x) > 0, or in-
side, f(x) < 0, the object's surface, while f(x) = 0
indicates that x lies on the surface of the object(See
Figure 1).

The marching-cubes algorithm constructs a surface
mesh by \marching" around the cubes while following
the zero crossings of the implicit surface f(x) = 0.
The resulting surfaces are relatively smooth and their
accuracy can be greater than the resolution of the vol-
ume grid due to sub-voxel interpolation (See Figure
2).

Now we focus on a more easily solved problem: How

(a) (b) (c)

Figure 2: Marching Cubes: An implicit surface is ap-
proximated of by triangles. �: voxels of outside sur-
face. �: voxels of inside surface.

do we compute f(x)? The real problem underlying our
simple question is that we do not have a surface; in-
stead, we have many surfaces. Some elements of those
surfaces do not belong to the object of interest but
rather are artifacts of the image acquisition process
or background surfaces. In the next subsection, we
present an algorithm that answers the question and
does so reliably in spite of the presence of noisy and
extraneous surfaces in our data.

2.2 Consensus Surface Algorithm

This section describes the method to compute the
signed distance function f(x) for arbitrary points x
when given N triangulated surface patches from vari-
ous views of the object surface. We call our algorithm
the consensus-surface algorithm.

We can break down the computation of f(x) into
two steps:

� Compute the magnitude: compute the distance,
jf(x)j, to the nearest object surface from x

� Compute the sign: determine whether the point
is inside or outside of the object

The previous naive algorithm �nds the nearest tri-
angle from all views and uses the distance to that tri-
angle as the magnitude jf(x)j. If the normal of the
closest surface point is directed toward x, then x must
be outside the object surface. In Figure 3, the point
chosen as the closest point from x does not belong to
the real surface. Thus, the algorithm incorrectly con-
siders that x is inside the surface based on the normal
information from the closest point.

Our solution to these problems is to estimate the
surface locally by averaging the observations of the
same surface. The trick is to specify a method for
identifying and collecting all observations of the same
surface.

Nearby observations are compared using their loca-
tion and surface normal. If the location and normal

Voxel
center point x

Voxel
center point x'

closest surface
point to x

f(x)
f(x')

Figure 3: Naive algorithm: An example of inferring
the incorrect sign of a voxel's value, f(x), due to a
single noisy triangle.

are within a prede�ned error tolerance (determined
empirically), we can consider them to be observations
of the same surface. Given a point on one of the
observed triangle surfaces, we can search that region
of 3D space for other nearby observations from other
views which are potentially observations of the same
surface. These searches are e�ciently implemented
using k-d trees[12].

The consensus-surface algorithm examines the clos-
est point in each image's triangle set. If there are su�-
cient surfaces of other triangle sets which are regarded
as the same surfaces of the each closest point, the clos-
est point is a consensus surface. The algorithm which
determines whether two surface observations are su�-
ciently close in terms of location and normal direction
is as follows:

SameSurface(hp
0
;n0i; hp1;n1i) =�

True (k p
0
� p

1
k� �d) ^ (n0 � n1 � cos �n)

False otherwise
(1)

where �d is the maximum allowed distance and �n is
the maximum allowed di�erence in normal directions.

For example, consensus surfaces are circled in Fig-
ure 4. The algorithm chooses the closest one of them
as the signed distance. In this case, it is correctly de-
termined that x is the outside surface and x

0 is the
inside surface.

2.3 Adaptive Resolution by Octree Rep-
resentation

Volumetric modeling involves a tradeo� between
accuracy and e�ciency. The octree representation[13]
balances these problems while keeping the algorithm
implementation simple. Instead of iterating over all
elements of the voxel grid, we can apply a recursive

Voxel
center point x

Voxel
center point x'

Figure 4: Consensus surface algorithm: The signed
distance is chosen from circled consensus suirfaces.

surface

2D slice
of octree

Figure 5: The adaptive resolution is high around the
surface and low elsewhere

algorithm on an octree that samples the volume more
�nely only when near the surface of the object (See
Figure 5).

To interpolate the zero crossings properly, we will
need the implicit distance for the voxel containing the
surface (the zero crossing) and all voxels neighboring
this voxel; these voxels must all be represented at the
�nest level of precision. This constraint means that,
if we have a surface at one corner of an octant, the
longest possible distance to the center of a neighboring
octant is one and one-half diagonals of the voxel cube,

which is a distance of 3
p
3

2
cube units.

Given the current octant, we can compute the signed
distance. If the magnitude of the signed distance,

jf(x)j, is larger than 3

p
3

2
of the octant width, then

it is not possible for the surface to lie in the current
or neighboring octant. If the surface is not in the cur-
rent or neighboring octant, we do not care to further
subdivide the current octant.

W0

surface

2D slice of an octant

W

Figure 6: Load only the mesh data within the dotted
rectangle into memory

3 Increase the computation and mem-

ory e�ciency

If the size of mesh data to be merged is huge, it is
di�cult to allocate all of those to memory, Also, the
computation time of the signed distance cannot be
ignored. We propose the following method to increase
the computation and memory e�ciency by reducing
the data allocated in the memory.

When the algorithm traverses a part of the octree,
the data searched for �nding the closest surface is only
the local area around the voxel. The data of the other
area are never used for computing signed distances
while traversing the sub-octree. Moreover, a closest
surface is e�ectively searched using a k-d tree. How-
ever, it is ine�cient when the k-d tree contains unnec-
essary data.

As described in Section 2.3, a octant is subdivided

when its signed distance is less than 3

p
3

2
cube units.

Thus, the data farther than 3
p
3

2
cube units is not nec-

essary for �nding the closest point of the voxel.
To load the necessary data into memory, we must

read all of the data �les. Since the overhead of reading
�les for the every �nest octant is too costly, we read
the data �les for an ancestor octant. Where the width
of an ancestor octant isW0 and the width of the �nest
octant is W , the area of the mesh data to be loaded
is inside the rectangle of a dotted line in Figure 6.

4 Parallel Computing of Signed Dis-

tances

In this section, we describe the algorithm for par-
allel computing of signed distances. There are two
motivations for parallel computing signed distances.
We now propose the parallel computing method for

Voxel
center point x

Voxel
center point x'

PC1

PC2

PC3

Data1
Data2

Data3

Figure 7: Parallel computation of signed-distances

each motivation:

1. Handling range data of huge size: We distribute
the allocation of range data to multiple PCs.

2. Fast merging: We divide the octree to sub-octrees
and assign traversal of a sub-octree to each CPU.

4.1 Distributed Allocation of Range Data

Calculating a signed distance from a point requires
consideration of all range data with respect to this
point. When the number of the measurement increases,
more data should be considered. It becomes di�cult
to allocate all the range data in a single processor.

We distribute that range data to multiple PCs and
compute signed distances in a parallel manner. For
example, in Figure 7, Data 1,2,3 are allocated to PC
1,2,3, respectively. Signed distances from the point, x,
to Data 1 are computed by PC1. In the same manner,
signed distances to Data 2 are computed by PC2, and
so on. Since �nding the closest point of a mesh data
is independent of the others, we can compute signed
distances in a parallel manner.

However, the computation times are di�erent among
CPUs; After �nding the closest points of all data, we
have to choose the smallest magnitude of the signed
distances. To synchronize, the CPUs have to wait un-
til the remaining CPUs �nish computing the signed
distances.

4.2 Parallel Traversal of an Octree

Dividing an octree into partial trees enables us to
traverse the partial trees. We assign the partial space
of an octree to each CPU and traverse partial trees
in a parallel manner (See Figure 8). Since the traver-
sals of partial trees are independent of one another,
a traversal does not have to synchronize with others,

surface

CPU1 CPU2

CPU3 CPU4
CPU1 CPU2 CPU3, ...

....

....

....

Octree nodes

Figure 8: Assignment of partial space of the octree to
each CPU and parallel traversal of partial trees

and the computation time can be reduced according
to the number of CPUs.

By the method described in Section 3, the area of
range data which each process owns is only inside the
voxel and its peripheral area. Thus, each process owns
only the range data of the local area which it takes
charge of in a traversal of a partial octree.

However, each machine must cache range data �les
in memory to read them e�ciently and repeatedly.
Since a PC cluster cannot share data as a shared-
memory machine can, range data �les have to be allo-
cated redundantly; therefore, memory e�ciency grows
worse as this parallel traversal method is used.

4.3 Combination of Parallel Methods

The above twomethods are complementary in terms
of the e�ciency of CPUs and memory usage. In prac-
tice, they should be adjusted according to the system
speci�cation by combining those two methods with an
appropriate condition. Two methods can be combined
by allocating range data distributed in each parallel
traversal.

The maximum number of traversals is determined
by the system memory size. Thus, the combination
strategy maximizes the number of traversals to deal
with the memory. If the system has more CPUs than
the parallel traversals, each traversal uses multiple
CPUs by the method of distributed allocation.

5 Performance Evaluation

We have implemented these algorithms, and con-
structed one integrated digital Great Buddha. For
this project, we have built a PC cluster that consists
of eight PCs of dual PentiumIII 800MHz processors
with 1GB memory for each PC. The machines are con-
nected by 100BASE-TX Ethernet. Figure 9 shows the
obtained geometric model of the Great Buddha; the

model contains 3 million points and 5.5 million trian-
gles.

We tested the merging program by changing pa-
rameters of the number of traversals and machines of
each traversal. Raw data consists of 12 �les; of those
�les, the average contains about 300 thousand points
and 600 thousand triangles. The total size is about
150M bytes. The result is shown in Table 1.

Without reducing the data allocated in the mem-
ory, the maximum number of the traversals is four
because of the system memory size. It takes 59 hours
to build the model where it is computed by 4 traver-
sals that are allocated and distributed to 4 PCs. It has
been proven that the method of reducing the data al-
located in the memory increases the computation and
memory e�ciency. After reduing data, we can com-
pute the signed distances by single machine and the
computation time is 468 minutes.

The algorithm without parallel processing is equal
to computing by one traversal using a machine. The
reciprocal of computation time is almost proportional
to the number of parallel traversals(See Figure 10);
and the reciprocal of required memory of each ma-
chine is proportional to the number of machines in
each traversals(See Figure 11).

According to the combination strategy, the signed
distances are computed by 16 parallel traversals that
are allocated to each PC to minimize the computation
time. If each PC has only 256MB memory, the signed
distances should be computed by 8 parallel traversals
that are allocated and distributed to 2 PCs.

6 Conclusion

In this paper, we proposed a method which in-
creases the computation and memory e�ciency of com-
puting signed distances, along with a method for par-
allel computing using a PC cluster. First, since we
reduce the data allocated in the memory, the closest
point is searched e�ciently. Thus, we can increase
the number of the parallel traversals and reduce the
computation time.

In addition, we described two algorithms which are
complementary in terms of the e�ciency of CPUs and
memory usage. By adjusting them according to the
system speci�cations, we can build the model e�-
ciently by using a PC cluster.

Now we can build models of huge size. In the fu-
ture, we plan to scan more Japanese cultural heritage
objects and build �ne models with photometric at-
tributes.

Figure 9: Merging result of Kamakura Great Buddha

Table 1: Results of di�erent parameters of the number of traversals and machines of each traversal.
Number of traversals Number of machines in

each traversal
Average required mem-
ory of each machine

Computation Time

1 1 200MB 468 min.
4 1 200MB 117 min.
1 4 50MB 215 min.
8 1 200MB 58 min.
1 8 20MB 256 min.
8 2 200MB 44 min.
16 1 250MB 23 min.

(use 1 machine in each travesal)
Number of traversals

R
ec
ip
ro
ca
l
o
f
ti
m
e(
1
/
m
in
u
te
s)

181614121086420

0.05

0.04

0.03

0.02

0.01

0

Figure 10: The reciprocal of computation time is pro-
portional to the number of parallel traversals.

(total 1 travesal)
Number of machines in each traversal

(1
/
m
eg
a
b
y
te
s)

R
ec
ip
ro
ca
l
o
f
re
q
u
ir
ed
m
em
o
ry

9876543210

0.06

0.05

0.04

0.03

0.02

0.01

0

Figure 11: The reciprocal of required memory of each
machine is proportional to the number of machines in
each traversals.

References

[1] Daisuke Miyazaki, Takeshi Ooishi, Taku
Nishikawa, Ryusuke Sagawa, Ko Nishino,
Takashi Tomomatsu, Yutaka Takase, and
Katsushi Ikeuchi. The great buddha project:
Modelling cultural heritage through observation.
In Proceedings of 6th International Conference
on Virtual Systems and MultiMedia, pp. 138{145,
Gifu, 2000.

[2] M.D. Wheeler, Y. Sato, and K. Ikeuchi. Consen-
sus surfaces for modeling 3d objects from multiple
range images. In Proc. International Conference
on Computer Vision, January 1998.

[3] W. Lorensen and H. Cline. Marching cubes:
a high resolution 3d surface construction algo-
rithm. In Proc. SIGGRAPH'87, pp. 163{170.
ACM, 1987.

[4] H. Hoppe, T. DeRose, T. Duchamp, J.A. McDon-
ald, and W. Stuetzle. Surface reconstruction from
unorganized points. In Proc. SIGGRAPH'92, pp.
71{78. ACM, 1992.

[5] Brian Curless and Marc Levoy. A volumetric
method for building complex models from range
images. In Proc. SIGGRAPH'96, pp. 303{312.
ACM, 1996.

[6] A. Hilton, A.J. Stoddart, J. Illingworth, and
T. Windeatt. Reliable surface reconstruction
from multiple range images. In Proceedings of
European Conference on Computer Vision, pp.
117{126, Springer-Verlag, 1996.

[7] M. Soucy and D. Laurendeau. A general sur-
face approach to the integration of a set of range
views. IEEE Transactions on Pattern Analysis
and Machine Intelligence, Vol. 17, No. 4, pp. 344{
358, April 1995.

[8] M. Rutishauser, M. Stricker, and M. Trobina.
Merging range images of arbitararily shaped ob-
jects. In Proceedings of 1994 IEEE Computer So-
ciety Conference on Computer Vision and Pat-
tern Recognition, pp. 573{580, June 1994.

[9] Greg Turk and Marc Levoy. Zippered polygon
meshes from range images. In Proceedings of SIG-
GRAPH'94, pp. 311{318. ACM, 1994.

[10] D. Bartz and W. Stra�er. Parallel construc-
tion and isosurface extraction of recursive tree
structures. In Proceedings of WSCG'98, Vol. III,
Plzen, 1998.

[11] P. Mackerras. A fast parallel marching-cubes im-
plementation on the fujitsu ap1000. Technical re-
port, Australian National University, TR-CS-92-
10, 1992.

[12] Jerome H. Friedman, Jon Bentley, and Raphael
Finkel. An algorithm for �nding best matches
in logarithmic expected time. ACM Transactions
on Mathematical Software, Vol. 3, No. 3, pp. 209{
226, 1977.

[13] D. J. R. Meagher. The octree encoding method for
e�cient solid modeling. PhD thesis, Rensselaer
Polytechnic Institute, 1980.

