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Abstract

Dense 3D reconstruction of extremely fast moving ob-
jects could contribute to various applications such as body
structure analysis and accident avoidance and so on. The
actual cases for scanning we assume are, for example, ac-
quiring sequential shape at the moment when an object ex-
plodes, or observing fast rotating turbine’s blades. In this
paper, we propose such a technique based on a one-shot
scanning method that reconstructs 3D shape from a single
image where dense and simple pattern are projected onto
an object. To realize dense 3D reconstruction from a single
image, there are several issues to be solved; e.g. instability
derived from using multiple colors, and difficulty on detect-
ing dense pattern because of influence of object color and
texture compression. This paper describes the solutions of
the issues by combining two methods, that is (1) an efficient
line detection technique based on de Bruijn sequence and
belief propagation, and (2) an extension of shape from inter-
sections of lines method. As a result, a scanning system that
can capture an object in fast motion has been actually de-
veloped by using a high-speed camera. In the experiments,
the proposed method successfully captured the sequence of
dense shapes of an exploding balloon, and a breaking ce-
ramic dish at 300–1000 fps.

1. Introduction
Dense and precise shape acquisition of fast moving ob-

ject with high frame-rate is strongly required in wide fields.
For example, if changing shapes of an exploding balloon
or dense shape of fast rotating turbine’s blades are acquired
with high frame-rate, it is expected to make a great contri-
bution to body structure analysis and accident avoidance.

For acquiring dense and accurate 3D shape, many laser-
based 3D scanning systems have been developed. However,
these are not suitable for fast-moving objects, because the
laser lights should be physically moved in one or two di-
mensions for scanning and essentially need time.

Currently, 3D scanners that use area light sources such as

video projectors to reduce the scanning time are actively re-
searched for scanning moving objects [20, 7]. For those sys-
tems, acquisition of correspondences between a camera and
a projector is critical. Usually, such information is encoded
into the projected pattern and decoded by image analysis;
the encoding methods can be categolized into two types,
such as spatial and temporal coding. Among them, spatial
encoding methods that use only a single input image are
more suitable for scanning extremely fast moving object.

A typical example of spatial encoding methods is a color
coding method with which reconstruction is achieved by
stereo with a window matching technique [3, 20]. How-
ever, many color coding methods have a critical problem
for density and precision on shape reconstruction. In these
methods, to retrive correspondences between a camera and
a projector, positional information to identify each pixel are
encoded in each window. Since pattern is usually distorted
and compressed depending on the object’s shape, it is dif-
ficult to use a dense pattern for actual scan, resulting in a
sparse reconstruction. In addition, to encode positional in-
formation efficiently in a small window, a number of colors
increases. This makes the technique to be influenced easily
by textures of the surfaces, and thus, shape reconstruction
tends to be unstable.

If a shape reconstruction using a small number of colors
with dense pattern is realized, aforementioned problems are
eliminated and dense and high precision reconstruction for
fast moving objects can be achieved. In this paper, we pro-
pose a method to realize this by combining two approaches;
the first approach is an efficient pattern encoding technique
to allow a periodical identification of line patterns using just
two colors of de Bruijn sequence and the second is a shape
reconstruction technique that does not require explicit cor-
respondences between a camera and a projector.

About the first approach, a dense grid pattern using de
Bruijn sequence is proposed. Normally, the number of re-
quired colors for de Bruijn sequence increases if unique
identification for all pixels is necessary. In the proposed
method, however, smaller number of colors is sufficient, be-
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cause non-unique identification with the same IDs appear-
ing periodically is allowed for restoring the scene with our
reconstruction method (the second approach). Moreover,
the grid pattern can be dense because errors of the identifi-
cation are allowed up to some extent with our reconstruction
method. To achieve stable extraction of the grid pattern,
vertical and horizontal relationships of adjacent pixels are
considered using a belief propagation (BP) technique.

The second approach relates to shape reconstruction
techniques that use intersections of line patterns [2, 11, 10].
Although these techniques have great advantages that they
require no identification of line patterns, they require large
computational costs. In addition, these techniques can re-
construct scenes only with some indeterminacies[12]. Thus,
Euclidean upgrade is required for final result and it is an un-
stable process. Because of such drawbacks, reconstructed
shapes are sparse and computational costs are high. In this
paper, we solve the problem by a new and efficient calcula-
tion technique that can drastically reduce a number of equa-
tions for 3D reconstruction.

Note that a complementary combination of the two ap-
proaches has a potential for dense and stable one-shot scan-
ning for the first time; the technique can be applied for
scanning a extremely fast moving object with high density
and accuracy. The main contributions of the paper are as
follows: (1) Dense shape reconstruction from a single im-
age using a dense and simple pattern is realized, (2) robust
edge detection algorithm based on a belief propagation is
presented, (3) an efficient and robust shape reconstruction
method that uses both geometric constraints of line patterns
with structures of pencils of planes and de Bruijn sequence
is proposed, and (4) an actual system which can capture
a extremely fast moving object is constructed to show the
strength of the method.

2. Related work
Shape reconstruction techniques with a structured light

with temporal and spacial coding are summarized in Ref.
[1]. Systems using only temporal coding is easy to imple-
ment, accurate, dense and robust, so it has commonly been
used for real applications [8]. Since the technique needs
to capture multiple images, it is not suitable for high-speed
capturing. Recently, several methods for high-speed cap-
turing were proposed by using a DLP projector and a high-
speed camera [17, 14]. Also, several research reducing the
required number of patterns using both temporal and spa-
tial changes were presented [7, 18]. Since these approaches
works for objects that have limited speeds, they are not
suited for capturing objects with extremely high speed.

Some methods use projectors only to provide textures
that change over time and 3D information is restored us-
ing a passive stereo technique [3, 20], although they are
not strictly structured light systems. Since they still require
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Figure 1. (Left) Scanning system: multiple lines are projected
and their intersections are detected and used for reconstruction.
(Right) projected pattern.

several patterns for identification, they are not suited for ex-
tremely fast objects.

Techniques using only spatial encoding of a pattern are
suitable for fast-moving objects, since they use only a
single-frame image [9, 16]. On the other hand, the prob-
lems are that they typically need complex patterns or colors
to encode positional information. To determine the spatial
codes uniquely, the size of a code becomes large. Such pat-
terns are easily affected by textures, shape discontinuities,
image compression caused by tilted surfaces. Therefore,
density of patterns should be inevitable low, and thus, 3D
reconstruction tends to be sparse and unstable in reality.

There are several researches that achieve shape recon-
struction from single images composed of multiple lines
or stripes. Koninckx et al. proposed a technique for dense
shape reconstruction using a simple pattern, i.e., a set of
stripes [13]. Their method depends on relative numbering
of the dense patterns, which assumes local smoothness of
the surface and may be disturbed by shape discontinuities
and line detection failures. Similarly, Frueh and Zakhor [6]
used vertical stripes and a horizontal line. The vertical
stripes are used for shape reconstruction and the horizontal
lines for identifying the vertical stripes. Some techniques
reconstruct 3D scenes, by representing projected line pat-
terns as an intersection between 3D planes and the scenes
[2, 11, 10], however, their technique can only applied for
sparse pattern; the reason will be discussed in Sec. 5.

3. System configuration
The proposed 3D measurement system consists of a

camera and a projector as shown in Fig. 1 (left). The camera
and the projector are assumed to be calibrated (i.e., the in-
trinsic parameters of the devices and their relative positions
and orientations are known). The projector pattern is fixed
and does not change, so no synchronization is required. A
grid pattern of vertical and horizontal lines is projected from
the projector and captured by the camera.

In this study, the method of reconstructing 3D informa-
tion efficiently is proposed with this system configuration.
First, the projected grid pattern is extracted from the cap-
tured image. To detect them stably, a method that utilizes
belief propagation and de Bruijn sequence is proposed. In
the method, pixels are labeled using BP, then, curves of
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boundaries are extracted in sub-pixel accuracy at the bound-
aries of the labels (Sec. 4).

Each detected curve is illuminated by a grid line emitted
from the projector. A emitted line from the projector goes
through a plane in the 3D space. The intersection points
of the grid pattern (grid points) can be extracted from the
detected vertical and horizontal curves. From these grid
points, simple constraints about the vertical and horizon-
tal planes are acquired. By solving all the constraints for
the entire grid pattern, solutions of the vertical and horizon-
tal planes are obtained, and the scene can be reconstructed
(Sec. 5).

4. Detection of dense grid pattern for one-shot
active stereo

The detection of color line patterns proposed in this pa-
per consists of two steps. The first step is detecting lines
regardless of the color and the second step is decoding the
color code based on the de Bruijn pattern shown in 1 (right)
and 2 (left).

In the previous studies, the stripe patterns were used as
shown in Fig. 2(middle). In that case, the cross talk of
RGB planes becomes a problem. Fig. 2(right) compares
the green values of the left and middle figures in Fig. 2.
The ratio of changes of the solid lines, which represents the
profile of an intensity of image for the proposed pattern, are
larger than that of the dotted lines, which represents the pro-
file of the stripe pattern used for the previous study. Thus,
thin lines used on our method are preferable for detecting
dense lines. To enable us to detect dense lines, we define
the line to be detected as a peak of intensity in the perpen-
dicular direction of the line. By using this definition, we
can ideally detect dense lines that exist every other pixel.
Moreover, we can double the density of lines by detecting
the negative peak, namely local minimum of the intensity,
as the projected lines. Therefore, we can detect lines on
every pixel at maximum.

Advantages of the proposed method are as follows. (1)
Projected grid lines can be detected while the vertical and
horizontal lines are designated, even if they are drawn in
the same color. (2) Since the label of each pixel is deter-
mined using information of the adjacent pixels, the method
is stable against noise.

4.1. Detecting dense line patterns
To take the continuity of a line into consideration, we

propose a method based on the belief propagation , which is
an energy minimization problem on a graph defined by [5]

E(f) =
∑
p∈V

Dp(fp) +
∑

(p,q)∈U

Wpq(fp, fq), (1)

where f is the set of labels to be determined, V is the set of
nodes, U is the set of edges, and p and q are the nodes of
the graph. Dp(fp) is the data cost of assigning label fp to

Figure 2. Line detection: (left)projected pattern of the proposed
system, (middle) projected pattern of a previous study, and (right)
the profiles for the images for the proposed pattern (solid lines)
and the previous study (dotted lines).
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Figure 3. Line detection: (left) Graph for BP, and (right) subpixel
calculation.

p. Wpq(fp, fq) is the discontinuity cost of assigning labels
fp and fq to neighboring nodes.

The proposed method separately detects vertical and hor-
izontal lines projected by the sensor, and now we consider
the detection of vertical lines. In detecting lines, the nodes
correspond to pixels of the camera, and the edges are the
connection to 4-neighboring pixels (the hatched pixels in
Fig. 3(left)). The proposed method discriminates every
pixel to three labels based on the derivative of the inten-
sity along x-axis (horizontal) of the camera. The labels are
positive (P ), negative (N ), and nearly zero (0). From the
definition of the line defined above, the line is detected as
the boundary of the labels P and N .

The data cost Dp(fp) is computed by the forward differ-
ence

Dp(fp) =

⎧⎨
⎩

I(x + 1, y)− I(x, y) if fp = N
|I(x + 1, y)− I(x, y)| if fp = 0
−(I(x + 1, y)− I(x, y)) if fp = P

, (2)

where I(x, y) is the intensity at a pixel p = (x, y). The
discontinuity cost Wpq(fp, fq) depends on the direction of
the edge as follows:

Wpq(fp, fq) =⎧⎪⎪⎨
⎪⎪⎩

−λ(fq − fp)(I(x + 1, y)− I(x, y))
if edge (p, q) is along x-axis

|fq − fp|
if edge (p, q) is along y-axis

, (3)

where fp and fq are 0,1, and 2 for the labels N , 0, and
P , respectively. λ is a user-defined parameter. Because of
changing the discontinuity cost with respect to the direction
of the edges, the proposed method can detect vertical lines
while the horizontal lines are ignored even if they are the
same color. The solution is given by iterative computation
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Detection of 
wrong connection
is possible.

Figure 4. (Left) Using color stripes for detection of wrong connec-
tion and (right) actual example image.

of passing messages between the nodes based on the max-
product BP algorithm.

The label of each node is determined by choosing the
label of the minimum cost. If the boundary of the labels
from P to N is detected, the subpixel position of the line is
computed by

x +
Cp(N)− Cp(P )

(Cp(N)− Cp(P ))− (Cq(N)− Cq(P ))
, (4)

where Cp(fp) is the final cost, which is computed as the
sum of the data cost and the messages (Fig. 3(right)). The
x-coordinate of q is x + 1 where that of p is x.

The horizontal lines are detected in the similar manner
by swapping the directions. Detecting the negative peaks is
also the same. Instead of finding the boundary from P to
N , the negative peak is detected as the boundary from N to
P .

4.2. Decoding color codes
Next, we decode the color code based on the de Bruijn

sequence [9, 15, 19]. A q-ary de Bruijn sequence of order
n is a sequence of length qn consisting of an alphabet of
size q in which every possible subsequence of length n is
present exactly once. If a projected pattern is encoded by
two or more symbols distinguished in a camera image, the
correspondence between an element in the projected pattern
and the observed pattern is uniquely determined by match-
ing subsequences of length n in a de Bruijn pattern.

There are two advantages to use color patterns. First,
wrong connection of lines can be reduced by color informa-
tion. Even if different lines are connected as a continuous
line, the discontinuity, which usually occurs at occluding
boundary, can be detected by recognizing the color patterns
as shown in Fig. 4.

The second advantage is that matching the sets of planes
becomes easy by using color patterns; actual algorithm will
be described in Sec. 5. Without color patterns, all com-
binations between projected and observed patterns must be
compared to determine the ambiguity. If the de Bruijn pat-
tern is used, it is sufficient that an observed line is compared
to every qn projected lines. This means the density of lines
can be increased qn times in principle. Moreover, since the
previous methods that use color patterns need to recognize
many lines uniquely, q and n must be large number. How-
ever, periodic patterns generated with small q and n are suf-
ficient for the proposed method. In this paper, we used the
number of colors q = 2 and the length of codes n = 3 as

shown in Fig. 1 (right). Namely, each cycle of the pattern
consists of eight lines.

For robust decoding of the sequence, a DP matching is
used in [19]. Since the proposed method uses vertical and
horizontal lines, we can more robustly decode the sequence
by utilizing two dimensional regularization based on the be-
lief propagation. Once the vertical and horizontal lines are
detected, the intersecting points are computed. Therefore,
we use the intersection points as the node of a graph and
the edges are determined by the detected lines. Since each
cycle consists of eight lines, the number of labels is eight.

The data cost Dp(fp) for decoding the de Bruijn se-
quence in the horizontal lines are defined as follows:

Dp(fp) = |H(p)−H(fp)|, (5)

where H(p) is the hue at the point of between the inter-
section point p and neighbor intersection point, and H(fp)
is the hue of the projected light for the line of label fp =
0, . . . , 7.

The discontinuity cost Wpq(fp, fq) is given by
Wpq(fp, fq)
= min(|(fp + d(p, q)) mod 8− fq|,

|8− (fp + d(p, q)) mod 8− fq|)2 (6)

where d(p, q) is 1 if q is on the next horizontal line in the
+y direction, -1 if q is on the next horizontal line in the −y
direction, and 0 otherwise. Namely, Wpq(fp, fq) depends
on the direction of the edge again.

5. Efficient shape from line pattern based on
pencils of planes

5.1. Problem definition
In this section, the approach for reconstruction from

stripes without identification of each line is described. In
the proposed method, a set of patterns of parallel lines is
used as a structured light. Each of the line pattern is emit-
ted from the projector and spreads through a plane in a 3D
space. We use a light plane to represent such a plane.

As described in Sec. 4, lines projected onto the target
scene are detected from the image. Each detected line cor-
responds to a light plane described above. If the 3D posi-
tion of the light plane corresponding to a detected line were
known, the 3D shape of the detected line could be calculated
by triangulation; but in reality the position of the light plane
is unknown. Thus, we need to estimate the light planes to
reconstruct the scene.

Kawasaki and Furukawa examined a problem of esti-
mating light planes generated by a freely moved line laser
projector [12]. They pointed out that reconstruction re-
sults include at least 4-DOF indeterminacies. Several re-
searches are conducted to achieve Euclidean solution by
using additional geometric constraints for similar problems
[2, 11, 4, 10].
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Figure 5. Left:Pencil of planes. Middle:Example of shape from
cast-shadows. Right:Example of one-shot active stereo.

In the above researches, reconstruction is based on rep-
resenting each light plane with 3 parameters since no con-
straints are assumed for these planes. If a dense grid pat-
tern is used, the 3-parameter representation causes a rapid
increase of the variables and equations used for reconstruc-
tion; thus, it results in increase of computational costs and
instability. A straightforward approach to this problem is
using 2-DOF or less parametrization of planes by imposing
certain geometrical constraints to the light planes. Bouguet
et al. used this approach; they used 2-parameter representa-
tion of planes by assuming that all the light planes were gen-
erated by a fixed point light source (the assumption means
that the planes share a single point) [2].

A set of planes that share a single line is called a pen-
cil of planes(Fig. 5(left)). A plane in a pencil of planes
can be represented by 1 parameter 1. Since the light planes
associated with the projected grid pattern used in the pro-
posed method have structures of two pencils of planes (one
is for the set of all the vertical lines and the other is for the
horizontal lines), each of the planes can be parametrized
by 1 parameter. By using the 1-parameter representation,
there exists a simple proportional relationship between a pa-
rameter of vertical and horizontal planes, which we use to
represent light planes generated by vertical and horizontal
grid lines, respectively. For each grid point detected from
the image, a single proportional relationship between the
light planes is obtained. Using this representation and other
mathematical techniques, we can decrease the number of
variables.

The proportional relationships obtained from the grid
points form a system of simultaneous equations. Since it
can be shown to have a solution having 1-DOF ambiguity,
the remaining ambiguity should be solved by using other
constraints. In this paper, the ambiguity can be resolved us-
ing the condition that the arrangement of the vertical and
horizontal planes and ID of de Bruijn sequence obtained
from the grid points must coincide with the given grid pat-

1A plane in the 3D space corresponds to a point in the dual space. A
pencil of planes in the 3D space corresponds to a line in the dual space. 1
parameter representation of the planes corresponds to representing points
on a line using 1 parameter in the dual space.

tern.
Note that our method is not specialized only for active

stereo using video projectors , but it can be used for more
general purposes, such as shape from cast-shadow gener-
ated by parallel edges and an uncalibrated moving light
source (Fig. 5(right)).

5.2. Representation of planes
In this section, a 1-parameter representation of a light

plane is described.
We assume both vertical and horizontal planes do not

include the optical center of the camera. Thus, a vertical
plane can be represented by

v1x1 + v2x2 + v3x3 + 1 = v · x + 1 = 0, (7)
where v ≡ (v1, v2, v3) is a parameter vector of the plane
and x ≡ (x1, x2, x3) is a 3D point represented by the cam-
era coordinates. In this paper, we use v to represent a plane
itself, as well as the parameter vector of the plane. All the
vertical planes include the axis of the pencil of planes. Let a
point on the axis be pv ≡ (pv1, pv2, pv3). Let the direction
vector of the line (the vertical direction of the projector) be
q ≡ (q1, q2, p3). Then, v should fulfill v · p + 1 = 0 and
v · q = 0. By solving these equations, we obtain

v = v0 + η(pv × q), (8)
where v0 is an arbitrary vertical plane. Similarly, a hori-
zontal plane h ≡ (h1, h2, h3) can be represented by

h = h0 + ρ(ph × r) (9)
where r is the horizontal direction of the projector, ph is
one of the points on the axis of the pencil of planes that
include the horizontal planes, and h0 is an arbitrary hori-
zontal plane. The plane that goes through the optical center
of the projector and is parallel with the projector’s image
plane is called the focal plane of the projector, and we use s
to represent this plane. Plane s is shared by the two pencils
of planes. Thus, by defining v′ ≡ pv×q, and h′ ≡ ph×r,
vertical planes and horizontal planes can be represented by
the following equations (see Fig. 6(left)):

v = s + ηv′, h = s + ρh′. (10)

We also use the 1D parameter to represent plane itself (i.e.,
ρ is used to represent plane v).

5.3. Solution
If a grid point (i.e., an intersection point between ver-

tical and horizontal curves, some of which are shown in
Fig.5(middle)) is detected, and the vertical and horizontal
curves are respectively included by a vertical plane v and
horizontal plane h, then the following equation is fulfilled:

u · (v − h) = 0 (11)
where u ≡ (u, v, 1) represents the 2D position of the de-
tected grid point (u, v) in the normalized camera coordi-
nates (see Fig.6(left)). About intuitive meanings of this
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Figure 6. Left:Constraints of planes. Right:Dependencies between
planes. Each of the parameters of the red planes (i.e., η1,η2, and
η3) linearly depends on the parameters of the blue planes (ρ1,ρ2,
and ρ3), if the blue planes are fixed and the red planes are esti-
mated.

equation, refer to the work of Bouguet[2]. From Eqs. (10)
and (11), we obtain

η(u · v′) = ρ(u · h′). (12)

Each vertical line detected from the image is associated
with a vertical plane. Let the index of a detected vertical
line be i the corresponding vertical plane be ηi. Similarly,
let the index of a detected horizontal line be j, and the cor-
responding plane be ρj . If those curves have a grid point
ui,j , then ηi(ui,j · v′) = ρj(ui,j · h′). By defining con-
stants Fi,j ≡ ui,j · v′ and Gi,j ≡ ui,j · h′, we obtain

Fi,jηi = Gi,jρj , (13)

which means that the 1D parameters of the vertical and hor-
izontal planes have a simple proportional relationship.

By accumulating Eq. (13) for all the grid points, L si-
multaneous equations with (M + N) variables (ηi, ρj , 1 ≤
i ≤ M, 1 ≤ j ≤ N ) are obtained, where M and N are the
numbers of detected vertical and horizontal curves, respec-
tively.

Let k be an index of a grid point, and let i(k) and j(k)
be the indices of the vertical and horizontal planes that go
through grid point k. Let T be a L×M matrix whose (p, q)
element is Fi(p),j(p) if q = i(p), and otherwise 0. Let R be a
L×N matrix whose (p, q) element is Gi(p),j(p) if q = j(p),
and otherwise 0. Then, by defining �η ≡ (η1, · · · , ηM )� and
�ρ ≡ (ρ1, · · · , ηN )�, simultaneous Eq. (13) are represented
by

T�η = R�ρ. (14)

To solve Eq. (14) by a least squares method, ||T�η −
R�ρ||2 should be minimized. This can be achieved by cal-
culating the eigenvector associated to the minimum eigen-
value of symmetric (M + N) × (M + N) matrix [T| −
R]�[T| −R]. There are efficient numerical algorithms for
this problem.

It is possible to reduce variables from Eq. (14). Solution
of least squares method is obtained by

min
�η,�ρ
||T�η −R�ρ||2 = min

�ρ
(min

�η
||T�η −R�ρ||2). (15)

The minimum value min�η ||T�η − R�ρ||2 with respect to �η

is achieved when �η = T†R�ρ, where T† ≡ (T�T)−1T�

is a pseudo inverse of T. This equation means that each
vertical plane ηi linearly depends on horizontal planes �ρ if
�ρ is fixed. (See Fig. 6(right)).

Since (r, c) element of T�T is

(T�T)r,c =
{ ∑

s T 2
s,r if r = c

0 otherwise , (16)

T�T is a diagonal matrix (equal of Eq. (16) comes from the
fact that each row of Ts,c has only one non-zero element).
Thus, (T�T)−1 can be directory calculated and T† is ob-
tained by simple multiplication. By substituting �η = T†R�ρ
into Eq. (15), we obtain

min
η,ρ
||T�η −R�ρ||2 = min

ρ
(||(TT†R−R)�ρ||2). (17)

This means that the optimal solution of horizontal planes
�ρ, which we term by ρ̂, is calculated as the eigenvector as-
sociated to the minimum eigenvalue of matrix (TT†R −
R)�(TT†R−R). Then the optimal solution η̂ is obtained
by η̂ = T†Rρ̂. Since (TT†R − R)�(TT†R − R) is a
N × N symmetric matrix, the computational complexity
can be further reduced.

5.4. Solving ambiguity
Eigenvectors always has an ambiguity of scaling. Ac-

tually, if Eq. (14) is fulfilled, �η and �ρ can be replaced by
c�η and c�ρ, respectively. Inversely, if all the vertical and
horizontal lines extracted from the image are connected by
intersections, then, this equation does not have indetermi-
nacy except for scaling. So, 3D reconstruction is performed
for each of the connected groups of the curves. The value
of c cannot be determined from Eq. (14), however, if the
true value of c is c̄, then the vertical and horizontal planes
of solutions c̄�η and c̄�ρ should be coincide with the given
grid pattern which is actually projected. In this study, 1-D
search [10] with respect to c to obtain c̄ is used to solve the
indeterminacy of scaling.

For simplicity, we calculate the similarity between a so-
lution of horizontal plane calculated from grid points and
the horizontal lines of the given grid pattern that is actually
emitted. Let P be the number of the horizontal lines of the
given grid and let gl,1 ≤ l ≤ P be the horizontal planes that
are associated to the lines. These vectors can be calculated
in advance. Then, the matching error function to compare
cρj , 1 ≤ j ≤ N and gl,1 ≤ l ≤ P can be defined as

E(c) =
∑

1≤i≤N

min
1≤l≤P

e(gl, s + cρjh′), (18)

where e(a,b) is a function that outputs the square of the
angle between a and b. By minimizing E(c) with respect
to c, c̄ is obtained. Since E(c) has numerous local minima,
it is difficult to apply numerical optimization methods. In
actual cases, the range of c is limited by the given horizon-
tal planes, thus, full 1D search of the range by intervals of
required precision is sufficient.
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To increase robustness of the search of solution, we use
ID information of de Bruijn sequence for matching. The
method is simple. For the calculation of similarity func-
tion (18), comparison is only done if the IDs of the given
grid line gl and the detected line s + cρjh′ are the same.
Thus, e(a,b) can be redefined to be a function that outputs
the square of the angle between a and b if B(a) = B(b),
and outputs 0 otherwise, where B(a) means the ID of de
Bruijn sequence associated to the plane represented by a.
This reduces the matching candidates (by about 1/8 in the
case of the implementation of this paper) and the stability
of search of the solution is much stabilized. Note that, since
the IDs are just used for additional information for 1D opti-
mization, error of identification is not serious compared to
previous color coding methods [9, 15, 19].

6. Experiments
6.1. Comparison and evaluation

To confirm the advantages of our method, we recon-
structed an object with texture and an object with occlu-
sion. In the proposed method, de Bruijn sequence of 2 col-
ors (blue and green) with the code length of 3 was used in
vertical and horizontal lines. For comparison, color cod-
ing method using only vertical color stripes [19] was also
applied to the objects, in which the color pattern was con-
structed based on de Bruijn sequence.

The result is shown at Fig. 7. In the color coding method,
3D reconstruction was successfully achieved by using both
the geometrical information obtained from the grid points
and the coded IDs, even if ambiguity remains in the IDs
for deciding unique correspondences. Moreover, in the pro-
posed method, extraction of edges were less affected by the
textures because of using only two colors. In addition, the
numbers of reconstructed points in the proposed method,
and the color coding method was 43852(book)/24796(cup)
and 12321/8319, respectively. Thus, the proposed method
could reconstruct more points than the other by the factor of
3.3 due to using dense lines. Standard deviation of the pro-
posed method and the color coding method was 2.09mm
and 4.15mm, respectively. Note that for calculating the
standard deviation of the color coding method, it required
manual process to remove many outliers, whereas nothing
was required for our method. From the results, we can con-
firm that the proposed method provides more dense and sta-
ble reconstruction than the previous color coding method.

6.2. Exploding balloon and breaking ceramic dish
Next, we conducted a dense 3D shape reconstruction us-

ing an object which changes its shape at the moment to
prove the ability of high frame-rate scanning. For the pur-
pose, we captured two objects, such as exploding balloon
with 1000fps and shutter speed 1/20000 and breaking dish
with 300fps and shutter speed 1/3200. In terms of balloon,
it explodes so quick and only a several frames can be cap-

(a)frame No. 809/1000 fps.

(b)frame No. 822/1000 fps.

(c)frame No. 824/1000 fps.
Figure 8. Results of a exploding balloon.

frame no. 12/300fps.

frame no. 14/300fps.

frame no. 19/300fps.

Figure 9. Results of a breaking dish.

tured at the moment of exploding as shown in Fig. 8. In
terms of dish, we can learn that how cracks are propagated
on the dish with 3D information, thanks to our dense recon-
struction method.

7. Conclusion
In this paper, a one-shot active stereo system that can re-

construct dense 3D shapes was proposed. In the proposed
method, a grid pattern is emitted from a video projector and
the pattern projected onto the scene is captured by a cam-
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(a) (b) (c) (d) (e) (f) (g) (h) (i)

(a) (b) (c) (d) (e) (f) (g) (h) (i)
Figure 7. Comparison between color coding method [19] and our method: (a) target object, (b) captured scene with color coding method,
(c) detect curves (d)(e) reconstructed shape, (f) captured scene with our method, (g) detected curves, and (h)(i) reconstructed shape.

era. To detect dense lines of the grid pattern stably, pixels
are classified based on belief propagation, and the grid lines
are extracted using boundaries of the classes in sub-pixel
accuracy. Then, the extracted lines are labeled by IDs using
de Bruijn sequence. In the paper, geometrical constraints
caused by the projected grid pattern were formulated us-
ing pencils of planes. By using the structure, simple pro-
portional relationships between parameters of planes were
shown, and an efficient method to reconstruct 3D infor-
mation up to 1-DOF indeterminacy using these constraints
was presented. The remaining indeterminacy can be stably
solved by using the IDs of de Bruijn sequence. Note that
the IDs may be non-unique, because they are used with in-
formation of geometrical constraints of grids. Thus, only
two colors are sufficient for the grid pattern, which helps to
achieve stable extraction of the pattern. To show validity
of the proposed method, reconstruction of sequences of fast
moving objects such as a bursting balloon or a breaking dish
was demonstrated.
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