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Abstract

This paper describes a novel method which extends the
search algorithm of a k-d tree for aligning and merging
range images. If the nearest neighbor point is far from a
query, many of the leaf nodes must be examined during the
search, which actually will not finish in logarithmic time.
However, such a distant point is not as important as the
nearest neighbor in many applications, such as aligning
and merging range images; the reason for this is either be-
cause it is not consequently used or because its weight be-
comes very small. Thus, in this paper, we propose a new
algorithm that does not search strictly by pruning branches
if the nearest neighbor point lies beyond a certain threshold.
We call the technique the Bounds-Overlap-Threshold (BOT)
test. The BOT test can be applied without re-creating the k-
d tree if the threshold value changes. Then, we describe how
we applied our new method to three applications in order to
analyze its performance. Finally, we discuss the method’s
effectiveness.

1 Introduction

The nearest neighbor problem in multidimensional space
is a major issue in many applications. Many methods have
been developed to search for the nearest neighbor of a query.
A simple exhaustive search computes the distance from a
query to every point. Its computational cost is O(n). This
approach is clearly inefficient. Hashing and indexing[21,
3] search in constant time, these methods require a large
space in which to store the index table. Some hierarchical
structures have been proposed to access multidimensional
data, such as k-d tree[1, 6], quadtree[18], k-d-B tree[17],
hB-tree[11] and R-tree[9]. These trees differ in structure,
but their searching algorithms are similar. For details, refer
to [7].

The k-d tree[1, 6] is one of the most widely used struc-
tures for searching for nearest neighbors. It is a kind of bi-
nary tree that partitions space by using hyperplanes that are
perpendicular to the coordinate axes. If a k-d tree consists
of n records, that k-d tree requires O(n log2 n) operations
to construct and O(log2 n) to search. In this paper, we ana-
lyze the search algorithm by using the k-d tree and propose
a novel method of pruning branches to reduce the computa-
tional cost for aligning and merging range images.

A case in which a search finishes in O(log2 n) is an ideal
case, in that only a leaf node is examined, and the nearest
neighbor belongs to it. However, a search using a k-d tree
does not actually finish in logarithmic time in many cases
because a search often needs to examine several leaf nodes
before finding the nearest neighbor point. In the worst case
scenario, all leaf nodes must be examined. When the nearest
neighbor is far from a query, the number of leaf nodes is
apt to increase (see Section 2). Therefore, we introduced a
novel test that takes place during the traversing of the k-d
tree. This test compares the distance from a query to the
nearest neighbor with a threshold defined by the user (See
Section 3).

Since the threshold depends on the application, we tested
our new method in aligning range images and merging
range images. These applications were three-dimensional
cases, in which 3-D models were compared. For aligning
range images, several methods have previously been pro-
posed to speed up the search of a k-d tree by caching the
closest points [19, 8]; These methods are applied to align-
ing range images and use the correspondences in the previ-
ous iteration as the initial estimate. They assume that the
correspondence does not change drastically; however, we
do not make such an assumption. Thus, our method can be
applied not only to aligning range images but also to merg-
ing range images. In higher dimensional case, Nene and
Nayar[15] proposed a method to find the nearest neighbor
point within a distance ε in high-dimensional space; how-
ever, this method cannot find any point outside the distance



A B

A B

C D

DC

k-d tree structure

leaf nodes

p

d

dB

dC dD

Figure 1. A 2-D example of a k-d tree

ε, and it has to re-create the data structure if ε changes.
Finally in this paper, we discuss the performance of our

method and present our summary in the Section 5 and Sec-
tion 6.

2 Basic Search Algorithm using k-d Tree

First, we describe the basic algorithm by which the k-d
tree searches for the nearest neighbor. Figure 1 shows a 2-D
example of a k-d tree that consists of four leaf nodes labeled
A, B, C and D. We do not describe how to construct a k-d
tree in this paper. For a detailed description. please refer to
[1, 6]

2.1 Finding the Nearest Neighbor Point

.
Now we will describe how we find the nearest neighbor

point from a query point p. In the searching algorithm, we
will start at the root node and traverse down to the leaf node
that contains the query point. In Figure 1, the leaf node
A contains p, and we compute the distances from p to the
records of A.

To avoid examining all leaf nodes, the algorithm prunes
branches by the Bounds-Overlap-Ball (BOB) test[6]. Af-
ter node A is examined, the distance from p to the nearest
neighbor is d. We determine B whether d satisfies the fol-
lowing BOB test:

d > dB, (1)

where dB is the distance from the query point p to the
boundary of A and B. Similarly, we compare d with dC and
dD to decide whether we will examine C and D. In this case,
d satisfies (1) for B, C and D. Thus, we have to examine all
nodes. If the hypersphere of radius d is completely inside
of a node after examining the node, the algorithm finishes
the search. (It is called Ball-Within-Bounds (BWB) test.)

Algorithm 1 SearchNearestNeighbor(N )
input: Node N

if N is leaf node then
Examine records of N

else
if p is inside leftson(N ) then

SearchNearestNeighbor(leftson(N ))
if d > drightson(N) then

SearchNearestNeighbor(rightson(N ))
end if

else
SearchNearestNeighbor(rightson(N ))
if d > dleftson(N) then

SearchNearestNeighbor(leftson(N ))
end if

end if
end if

The basic search algorithm is represented by a recursive
function (Algorithm 1). N is the node of interest. p is the
query point. d is the distance of the current nearest neigh-
bor. rightson(N) and leftson(N) mean the sons of node
N . drightson(N) and dleftson(N) are the distances from the
query to the boundary of the right/left son of N .

2.2 Estimating Computational Cost

If a k-d tree contains n records, the depth of the tree is
O(log2 n). Because of this, Friedman et al.[6] say that the
computational cost of searching for the nearest neighbor us-
ing the k-d tree is O(log2 n). However, this is only for a
case in which the leaf node that contains the query is exam-
ined, and all other branches are pruned by the BOB test.

Actually, in the worst case, such as Figure 1, no branch
can be pruned, and the computational cost becomes O(n)1.
In particular, when the distance d from the query to the near-
est neighbor is large in comparison with the distribution of
records in the k-d tree, almost all boundaries can be inside
the ball.

3 Bounds-Overlap-Threshold Test

In this section, we propose a new method to reduce the
computational cost of searching for the nearest neighbor
points using the k-d tree. Many applications need near-
est neighbor points that are actually near queries. Thus,
when the records are far from the queries, they are either
not used or contribute minimally. However, as we estimated
the computational cost in the previous section, if all records

1This is a rough estimation. A more accurate estimation is
O(

∑log2 n

k=0
2k)
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Figure 2. The Bounds-Overlap-Threshold
(BOT) test

in a k-d tree are far from a query, the computational cost is
larger than it is when the nearest neighbor is close.

If we can assume that it is not important if the nearest
neighbor is far from a query, it is sufficient that we find
out that there are no records near the query. Then, we pro-
pose a new method to reduce the computational cost when
the nearest neighbor is far from a query. We introduce the
Bounds-Overlap-Threshold (BOT) test to the searching al-
gorithm.

Now, we assume that it is not important if the nearest
points are farther than δ. Figure 2 shows the same situation
with Figure 1. When we decide whether to examine node
B, we define the BOT test as follows:

δ > dB. (2)

We prune a branch if the BOB test or the BOT test fails.
Since the BOT test failed in the cases of B and D, we did
not examine them. However, we examined C, since d > dC

and δ > dC .
If d ≤ δ, the algorithm is completely the same as that be-

fore the BOT test is introduced. If d > δ, the new algorithm
may not find the true nearest neighbor point. The distance
dtrue from the query to the true nearest neighbor is

δ < dN < dtrue ≤ d, (3)

where dN is the smallest distance from the query to the
boundary of node N, which is larger than δ.

If the maximum distance of two points in a k-d tree
is 2D, the volume of the hypersphere, which contains all

Algorithm 2 SearchNearestNeighborBOT(N )
input: Node N

if N is leaf node then
Examine records of N

else
if p is inside leftson(N ) then

SearchNearestNeighborBOT(leftson(N ))
if d > drightson(N) ∧ δ > drightson(N) then

SearchNearestNeighborBOT(rightson(N ))
end if

else
SearchNearestNeighborBOT(rightson(N ))
if d > dleftson(N) ∧ δ > dleftson(N) then

SearchNearestNeighborBOT(leftson(N ))
end if

end if
end if

points of a k-d tree, is proportional to Dk . The volume
of the hypersphere of radius δ is also proportional to δk .
Therefore, if the points in a k-d tree have uniform distribu-
tion, our new method reduces the computational cost of the
worst case from O(n) to O(( δ

D )kn).
The search algorithm with the BOT test is represented

by a recursive function (Algorithm 2). N is the node of
interest. p is the query point. d is the distance of the cur-
rent nearest neighbor. rightson(N) and leftson(N) mean
the sons of node N . drightson(N) and dleftson(N) are the
distance from the query to the boundary of the right/left son
of N . The difference from the basic algorithm is illustrated
by gray boxes.

In our implementation, the data to be loaded to mem-
ory is managed by the memory mapping function provided
by the operating systems. Since we load only the data to
be traversed during the search, we can reduce the required
memory for searching for the nearest neighbor.

4 Applying Our New Method to Aligning and
Merging Range Images

To test our new method, we considered two applications
that use nearest neighbors in a multidimensional space:
aligning range images and merging range images. Figure
3 shows the steps in modeling an object’s shape.

4.1 Aligning Range Images

We can acquire the shape of an object from various view-
points using range finders[5, 14]. A range image acquired
by the range finders contains part of the shape of an object.
Thus, we capture range images from various viewpoints to
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Figure 3. Steps of geometric modeling of an
object

acquire the whole shape of the object. We do not know the
mutual relationship of the range images a priori. Therefore,
we align them with a common coordinate system by using
iterative registration techniques [2, 20, 16, 13]. To find cor-
responding points between two range images, we use the
nearest neighbor points by searching k-d trees that we con-
struct from each range image.

In aligning range images based on the iterative registra-
tion techniques, range images are assumed to be roughly
aligned. Thus, if the distances of corresponding points
are large, some methods regard that the correspondence is
wrong and omit it from computing the posture of range im-
ages by thresholding or M-estimation [16, 20, 13]. Since
our aligning method uses M-estimator [20], the weights of
the corresponding points which are far from each other are
quite small. Therefore, we set the threshold distance δ to the
distance at which the weight of the M-estimator becomes
sufficiently small. Even though the corresponding points
are not the nearest points because of the BOT test, the result
is not affected by them since the weight is quite small or
zero.

Figure 4 shows the two range images (red and white)
which we aligned to estimate our method. Since they are
partially overlapped, about 30% of the points of the range
images have no corresponding points. When we align them
using the basic search algorithm, Figure 5 shows the distri-
bution of the number of records examined during the search
for a nearest neighbor point in the aligning application. The
number of records examined grows according to the dis-
tance from the queries.

On the other hand, when we search for nearest neigh-
bor points using the BOT test, we can drastically reduce
the number of records examined in the area where the dis-

Figure 4. An example of aligned two range
images (red and white)

tance from the query is larger than d. In this experiment, we
tested two thresholds, δ = m and δ = m + σ, where m and
σ are the average and the standard deviation of distances
computed in the previous iteration. Figure 6 shows the dis-
tribution of the number of records examined with δ = m,
and Figure 7 is the result with δ = m + σ.

The total number of records examined is 1,937,616 with-
out the BOT test, 1,129,552 with δ = m(= 0.10), and
1,421,459 with δ = m + σ(= 0.24). while the number of
search is 137,009. The computational cost of searching for
the nearest neighbor points With the BOT test is regarded
as 58.3%(δ = m) and 73.4%(δ = m + σ) of that of the
basic search algorithm (see Table 1). The time of a search
is also reduced as shown in Table 2, which shows the aver-
age time of a search computed by Intel PentiumIII 1.0GHz
processor. Thus, we have demonstrated that our method ef-
ficiently finds the nearest neighbor points in the overlapping
area with pruning unnecessary branches in the isolated area.

4.2 Merging Range Images

To merge range images, we convert the images to vol-
umetric representation by computing the signed distance
field (SDF) from the multiple range images [20, 4, 10].
Figure 8 shows that the merging algorithm is applied to a
situation in which there are three range images which are
intersecting between two neighboring voxels. First, the al-
gorithm finds the nearest point of each range image from
the the center of the voxel x. Next, if x is outside by con-
sidering the normal vector of the nearest point, the signed
distance f(x) is positive; otherwise f(x) becomes nega-
tive. The magnitude of f(x) is the distance from x to the
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Figure 5. An example of the relationship be-
tween the distance from a query to the near-
est neighbor and the number of records ex-
amined, using the basic search algorithm for
aligning range images.

nearest point. In this case, f(x) is positive and f(x′) is neg-
ative. We compute the signed distance for every voxel into
which the whole 3D space is partitioned. Consequently, the
shape of the object’s surface is represented by the isosurface
f(x) = 0.

We create a mesh model of the whole object by
converting from the SDF by using the marching cubes
algorithm[12]. If the distance from a voxel to the range im-
ages is larger than

√
3

2 w, where w is the interval of voxels,
there is no surface around the voxel. Thus, it is enough for
us to find that no point in the k-d tree is closer than

√
3

2
w,

and we set δ =
√

3
2 w. Our merging method, which is based

on Wheeler’s method[20], reduces the computation of the
SDF in an octree manner. Therefore, the voxel width w
varies according to the depth of octree subdivision to which
the current voxel belongs. We change the threshold δ as
well as the voxel width w.

We merged 32 range images, some of which are shown
in Figure 3. Since they are partially overlapped, some range
images are near a voxel and others are far from it. Thus, our
method efficiently finds the nearest neighbor with pruning
unnecessary branches of far range images. Figure 9 and Fig-
ure 10 shows an example of the distribution of the number
of records examined during the search for a nearest neigh-
bor point in the merging application. When we search for
the nearest neighbor points using the BOT test, the number
of records examined gets closer to 1 at any distance from
the query. This is because we adjust threshold δ according
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Figure 6. Relationship between distance from
a query to the nearest neighbor and the num-
ber of records examined, using the BOT test
for aligning range images (δ = m).

Table 1. The number of records examined of
the basic algorithm and our new method

Basic algorithm with BOT test Ratio

Aligning(δ = m) 1,937,616 1,129,552 58.3%
Aligning(δ = m + σ) 1,937,616 1,421,459 73.4%

Merging 12,510,697,618 902,199,301 7.2%

to the voxel width. In this example, the total numbers of
records examined are 12,510,697,618 without the BOT test
and 902,199,301 with the BOT test, while the number of
search is 57,470,464. Specifically, the computational cost
of searching the nearest neighbor points is reduced to 7.2%
of that of the basic search algorithm (see Table 1), and Ta-
ble 2 shows the computational time computed by Intel Xeon
2.4GHz processor.

5 Discussion

The performance of the BOT test depends on the applica-
tion. In this section, we consider the application conditions
in which our method works best. First, the most important
requirement in applying our method is that the threshold δ
can be determined in the application. After determining δ,
the performance of the BOT test depends on the distribution
of distances from queries to nearest neighbor points. Our
method works best when the portion of the number of near-
est neighbor points that are farther than δ becomes larger.
In many cases in aligning and merging range images, since
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Figure 7. Relationship between distance from
a query to the nearest neighbor and the num-
ber of records examined, using the BOT test
for aligning range images (δ = m + σ).

Table 2. Average time of the basic algorithm
and our new method

Basic algorithm with BOT test Ratio

Aligning(δ = m) 12.42usec 9.26usec 74.6%
Aligning(δ = m + σ) 12.42usec 10.58usec 85.2%

Merging 52.12usec 8.92usec 17.1%

range images are partially overlapped as shown in Section
4, some range images are far from a query point. It is not
important to find the nearest neighbor point for far range im-
ages in aligning and merging. Thus, our method efficiently
reduces the computational cost by pruning far range image
points. The reason why the computational cost in merging
range images was drastically reduced is considered to be
that only a few range images are near a voxel and most of
all range images are far from it. Therefore, it is expected
that the efficiency of our method increases if we align many
range images simultaneously because most of all range im-
ages are far from a query point.

A simple solution to prune branches of far range im-
age points is to omit them in creating a k-d tree if they
are outside of a bounding box; however, it is necessary to
re-create the k-d tree if the position and size of a bound-
ing box changes. In particular, as shown in merging range
images, our merging method uses the variable threshold δ.
Our method can be applied without re-creating the structure
of a k-d tree. Therefore, our method is efficient in cases
in which the appropriate threshold varies according to the

Normal vector

Range images

2D slice of voxel

f(x)
f(x')

Figure 8. Compute signed distance by finding
the nearest points of range images.

situation. On the other hand, methods which uses a param-
eter to define neighborhood, such as a simple bounding box
and Nene’s method [15], have to re-create its structure for
searching in those cases.

From the viewpoint of the correctness of the nearest
neighbor point, if the distance is smaller than δ, the found
result is correct. If the distance is larger than δ, the dis-
tance to the correct nearest neighbor is in the range given
by (3). Thus, (3) gives us the estimation for the distance
of the true nearest neighbor. However, we cannot obtain a
good estimation for the vector of the true nearest neighbor.
Therefore, we have to set δ larger than the minimum dis-
tance of the vector of the nearest neighbor that we need to
obtain.

6 Summary

In this paper, we have proposed a new algorithm for
searching for the nearest neighbor by using the k-d tree. If
the nearest neighbor point is far from a query, it is not an
important nearest neighbor in many applications. Thus, we
have proposed the Bounds-Overlap-Threshold test, which
does not search strictly by pruning branches if the nearest
neighbor point is beyond a threshold. This technique drasti-
cally reduces the computational cost if the nearest neighbor
is far from a query. Since the threshold of the BOT test
can be changed without re-creating a k-d tree, the technique
is suitable for applications in which variable thresholds are
considered. Finally, we have discussed the performance,
which depend on the distribution of the distance from a
query to the nearest neighbor.
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number of records examined using the basic
search algorithm for merging range images.
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