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Abstract

When we use range finders to observe the shape of an ob-
ject, many occluded areas may occur. These become holes
and gaps in the model and make it undesirable to utilize the
model for various applications. We propose a novel method
to fill holes and gaps and complement such an incomplete
model. We use a signed distance field (SDF) as an inter-
mediate representation, which stores Euclidean signed dis-
tances from a voxel to the nearest point of the mesh model.
Since the signs of a SDF become unstable around holes or
gaps, we take a consensus of the signed distances of neigh-
bor voxels by estimating the consistency of the SDF. Once
we make the SDF consistent, we can efficiently fill holes and
gaps.

1 Introduction
Recently, many researchers have studied modeling the

shape of real world objects by scanning them using three
dimensional digitizers, such as laser range finders [5, 12]
and structured-light range finders [15]. They measure dis-
tances from the point of view to the surface of the object
which can be seen from the sensors. Thus, to acquire the
whole shape of an object, we have to scan it from various
viewpoints by using those sensors. If the object has an intri-
cate shape, many occluded areas may occur. Consequently,
there are often unobserved surfaces, even when full use is
made of the various kinds of sensors. However, it is too
costly to cover every hole which is not observed by any
range images by taking range images from various view-
points. In the worst case scenario, we are not able to obtain
the data needed to create a complete model. However, we
want to fill such holes to make use of the constructed mod-
els in many different applications, such as creating a solid
model and visualizing the model. Therefore, we propose
a new method that enables us to complement the geomet-

ric models by estimating the neighborhood area of the holes
and filling the holes and gaps. Since filling the holes of a
model is a major issue in this field, several approaches have
previously been proposed. The simplest approach is inter-
polation by triangulating the boundary vertices of a hole. If
the hole is small and the topology is simple, the triangu-
lation works well; however, triangulation becomes difficult
if the surface is intricate and the hole is large. The second
approach is to fit a mesh model around the hole, that is, a
three-dimensional version of snakes [10]. In these meth-
ods [7, 3], a deformable surface moves iteratively to fit the
model with satisfaction of the smoothness constraint. Since
they determine the topology a priori, they are not suitable
for intricately-shaped objects. The third approach is called
“space carving.” Curless and Levoy [4] tag one of the states,
unseen, empty and near the surface, to each voxel during
the merging process. The hole filling is accomplished by
generating a surface between voxels of unseen states and
those of empty states. Since space carving methods do not
consider viewing objects from other viewpoints, the result
of rendering from different viewpoints may be far from ac-
ceptable. The fourth approach is interpolation by volumet-
ric representation, such as level-set approaches [18, 19] and
re-computation of the implicit surface [2, 6]. Davis et al. [6]
re-compute the implicit surface by diffusing the signed dis-
tance function from the vicinity of the observed surface to
the whole volume; however, this method sometimes fails in
high curvature areas because it does not consider the con-
sistency of the isosurface.

Our method is similar to the third and fourth approaches.
In our framework, we compute the signed distance field
(SDF) using multiple range images Since we separate the
entire volume into two manifolds by SDF, we can generate
a closed surface by converting SDF to a mesh model. How-
ever, the sign of SDF becomes unstable around the holes.
Thus, we cannot interpolate the holes to a suitable surface



by applying the merging method straightforwardly. In this
paper, we thus propose a novel method to interpolate the
holes of range images by taking a consensus of the SDF
sign with those of the neighbor voxels.

2 Convert from Range Images to SDF
Some methods of merging range images [4, 17, 18, 9]

use SDF as an intermediate representation of the surface,
and there are several ways to compute a signed distance.
For example, Curless [4] used the distance between a voxel
and the point of a range image along the line of sight of
the range image. Wheeler [17] used the closest point of
a range image from the center of a voxel to compute the
signed distance.

In this paper, we assume that the magnitude of a signed
distance is the Euclidean distance from the center of a voxel
to the closest point of range images. It is necessary to take
a consensus of the signed distances of neighbor voxels. Our
merging algorithm [13, 14] is based on the consensus sur-
face algorithm [17], and it computes a signed distance by
finding the closest point of range images by taking a con-
sensus of range images and discarding outlier points. Since
the magnitude of the signed distances of our method is Eu-
clidean distances, we use the SDF computed by our merging
algorithm as the input of the new method described in this
paper. Naturally, we can apply our new method the SDF
created by other methods if the SDF satisfies this assump-
tion.

In our merging algorithm, the sign of a signed distance is
determined by considering the normal vector n of the clos-
est point, which looks outside and is computed by averaging
the normal vectors of the triangles to which it belongs, and
the vector v from the center of the voxel to the closest point.
Thus, the signed distance d is computed as

d = sgn(−n · v)|v|, (1)

where sgn(x) is 1 if x is positive and is −1 if x is negative.
Moreover, our merging algorithm proposed in [13] uses

voxels of adaptive resolution in an octree manner. In an area
which is far from range images, we sample the 3D space
coarsely and use voxels of large size. If range images are
nearby, we sample the 3D space more finely. The width
of voxel W is determined by the magnitude of the signed
distance:

W <
2

3
√

3
|d|. (2)

An example of SDF in adaptive resolution is shown in Fig-
ure 2(d). Since the range images are near the green vox-
els, the resolution becomes coarse according to the distance
from range images.

3 Instability of Computing Sign of SDF
In this section, we point out the problem of computing a

signed distance. Often, a mistake occurs in computing the

Figure 1. Corruption of the surface caused by wrong
sign of SDF

sign of a signed distance. This especially happens where
the surface of the object is highly curved. Figure 1 shows
an example of computing signed distances when there is
high curvature surface of an object. The gray line denotes
the real surface of the object. The black solid lines indicate
the range images. In this situation, we regard every point
of the range images as having consensus. Each arrow is the
vector from the center of a voxel to the nearest point. If a
voxel is inside the object by considering normal vectors of
range images, the sign is negative, and the voxel is filled by
the color gray in Figure 1.

In a high curvature area, it is difficult to cover both sides
of a corner with only a single range image. Thus, we need
several range images to cover the entire corner; and to align
both sides into a common coordinate system. Although the
lower left area is obviously outside in Figure 1, the signs
of those voxels are negative because they are considered to
be inside by the normal vector of the nearest point. We use
the marching cubes algorithm (MC) [11] to convert the SDF
to a mesh model. The generated surface corrupts, as repre-
sented by the dotted lines. The signs of the signed distances
become unstable to noise around the boundary of holes and
gaps for the following three reasons:

1. The relative positions of range images after aligning
each other involve errors caused by the errors of mea-
surement.

2. It is difficult for range images to overlap one another
at the point of sharp corners.

3. There are surface holes which are not covered by any
range image.

First, since the signs of SDF can change unstably due to a
small error of the position of a range image, the shape of
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Figure 2. Merging results of an object with sharp corners

the generated mesh model is greatly affected by a change
of signs of SDF. Second, because a single range image can-
not cover both sides of a sharp corner, the sign of a voxel
changes according to the range image which is used to com-
pute SDF. Moreover, a gap between range images often oc-
curs due to the insufficient sampling interval of each range
image. Thus, it is difficult to determine whether the voxel
is inside or outside of the surface. Third, it is often diffi-
cult to acquire range images to cover the whole surface in
many cases. If a hole exists, the sign of SDF can be unstable
around the hole.

Figure 2(a) shows the range images of an object which
has sharp corners. Figure 2(e) is a zoom-up of one of the
sharp corners. Due to the above reasons, it is hard to de-
termine whether a voxel is inside or outside near the corner.
Consequently, the result of converting SDF to a mesh model
by MC is shown in Figure 2(b) and (f). Since the signs of
SDF of some voxels are wrong, many vertices and triangles
are generated outside of the object.

If the magnitude of a signed distance is smaller than the
width of the voxel, the nearest point is inside the voxel.
Thus, the generated vertices and triangles are not far from
the real surface. Therefore, if we restrict the magnitude of
SDF to apply the SDF to MC comparing the magnitude with
the width of the voxels, erroneous meshes are not generated.
If we use the voxels whose signed distances are smaller than

their width, the merging result becomes Figure 2(c) and (g).
Erroneous meshes are removed; however, holes in the sur-
face remain where the magnitude of the signed distances
was larger than the width of voxels.

Figure 2(d) and (h) are 2D slice of the SDF. Yellow and
red voxels indicate that they have positive signed distances,
and blue voxels indicate negative ones. The magnitudes of
the signed distances of red voxels are larger than those of
yellow voxels. Also, blue voxels have larger magnitudes
than light-blue voxels. And green voxels are near range
images. When we generate a mesh model even if the iso-
surface is between red and blue voxels, we get the former
erroneous mesh model. On the other hand, if we generate
only a mesh model near the green voxels, we get the latter
mesh model with holes. To interpolate holes of the surface,
a method is needed to determine the signs of SDF which are
resistant to errors caused by the above reasons.

4 Consistency of the SDF
Our merging algorithm takes a consensus of range image

points for outlier detection; however, it does not consider a
consensus of the signed distances of adjacent voxels. In this
section, we introduce a new criterion to estimate whether
the signed distances of adjacent voxels are consistent with
each other.

Figure 3 shows three examples of the signed distances of
adjacent voxels. The width of the voxels is 1.0. In Figure
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Figure 3. Three examples of signed distances of adjacent voxels

3(a), both voxels are outside of an object whose signed dis-
tances are 1.0 and 0.8. If the signs of the adjacent voxels
are the same, the isosurface does not exist between them.
Since the arrows from the center of the voxel to the surface
represent the nearest neighbor points and the normal vector
looks outside, it is possible that both signed distances are
the same, as shown in Figure 3(a). Thus, they are consid-
ered to be consistent with each other.

In Figure 3(b), the signs of the adjacent voxels are differ-
ent. The signed distances are −0.3 and 0.6. The gray voxel
means that it has a negative signed distance. An isosurface
exists between two voxels. Since it is possible to compute
the situation from a surface as shown in Figure 3(b), the
signed distances of the two voxels are considered to be con-
sistent.

In Figure 3(c), the signs of the adjacent voxels are dif-
ferent, Similar to Figure 3(b). The difference from Figure
3(b) is that the signed distances are −1.0 and 0.8. By con-
sidering the SDF of these two voxels, an isosurface exists
between them; however, if the original surface existed be-
tween them, the sum of the magnitude of the two signed dis-
tances would be smaller than the width of the voxel. Thus,
the original surface does not exist between the two voxels in
this case, and the situation is considered to be inconsistent
to generate meshes between them. The inconsistent situa-
tion such as Figure 3(c) occurs for the reasons described in
Section 3. If the signed distances of two adjacent voxels
satisfy the following inequality, we define the situation as
inconsistent:

|d − d′| > W, (3)

where d and d′ are the signed distances of two adjacent vox-
els. Consequently, if there is an inconsistency of SDF, the
sign of the signed distance is doubtful, and we examine the
situation to generate a mesh model which is consistent with
the original surface.

5 Flip Sign of SDF
Our new method proposed in this paper takes a consen-

sus of the signed distances of adjacent voxels. We have
already introduced a criterion by (3). We compared a voxel

with its adjacent voxels. Since our merging method uses
voxels of adaptive resolution in an octree manner, the width
of the adjacent voxel can be different. Thus, (3) is modified
to

|d− d′| > α
W + W ′

2
, (4)

where W is the width of the current voxel, W ′ is the width
of the adjacent voxel and α is a parameter defined by the
user. We usually use α = 1.0.

We compare a voxel with all adjacent voxels. If the sizes
of adjacent voxels are same, the number of adjacent vox-
els in a 3D space is 26. The simple solution to determine
whether the voxel is inconsistent or not is to count the num-
ber of adjacent voxels N which satisfies (4). If N is suffi-
ciently large compared with the total number of the adjacent
voxels, we regard that the voxel is inconsistent. However,
we empirically determined that the convergence is too fast
and the surface remains unstable when we use this criterion.
Therefore, instead of counting N , we count the following
numbers of adjacent voxels N1, N2, N3, N4 which satisfies

N1 : |d − d′| ≤ αW̄
N2 : |d − d′| > αW̄
N3 : | − d − d′| ≤ αW̄
N4 : | − d − d′| > αW̄

(5)

where W̄ = (W + W ′)/2. If these numbers become

N2 + N3 > β(N1 + N2 + N3 + N4), (6)

We consider that the sign of the signed distance of the voxel
is inconsistent. Then, we flip its sign to make it consistent
with the adjacent voxels. We usually use β = 0.5. We
compute the consistency as for all voxels, and flip its sign
if it is inconsistent with its adjacent voxels. We iterate this
process until all voxels are consistent.

In some situations, since it is not always |d − d′| > αW̄
when | − d − d′| ≤ αW̄ , the signs of the flipping voxels
may oscillate and the number of flipping voxels may not
converge to 0, In such cases, we increase α or β and relax
the condition during iteration if the convergence becomes
slow.



After one iteration, we can restrict the voxels to examine
their signs. If the signs of a voxel and its adjacent voxels
did not flip in the previous iteration, we do not have to ex-
amine it in the current iteration. Thus, we record the voxels
whose signs were flipped, and use the database to determine
whether we need to examine a voxel. For details, refer to
[14].

6 Analysis with Level Set Formulation
In this section, we analyze our method with level set for-

mulation [16]. In the level set formulation, the zero level
isosurface f(x) = 0 evolves according to the following par-
tial differential equation:

∂f

∂t
+ F |∇f | = 0, (7)

where F is the speed function. Then, the approximation
using a discrete voxel indexed by (i, j, k) at time n becomes

fn+1
ijk − fn

ijk

∆t
+ F |∇ijkf

n
ijk| = 0, (8)

where ∆t is the time step. If we interpret our method to one
of the level set method, our method can be represented by
using the following speed function F :

F =

{
− 2fn

ijk

|∇ijkfn
ijk

|∆t (6) is satisfied

0 otherwise
(9)

We consider only the derivatives of fijk where the SDF sat-
isfies (6) because we make only unstable surfaces propa-
gate.

If we consider the curvature κ of the isosurface, which
is computed by κ = ∇ · ∇f

|∇f| , the above condition of F is
identical to

F =

{
sgn(κ) 2fn

ijk

|∇ijkfn
ijk

|∆t
|κ| > ε

0 otherwise
(10)

where ε is a parameter, because κ and fn
ijk have the same

sign when (6) is satisfied. Figure 4 shows two examples of
the situations. In this figure, the characters + and − denote
the sign of SDF. We can see the sign of the signed distance
of the center voxel is same with the curvature κ.

If the speed function is F = −κ, which is used in the
heat equation, the highly curved surface is smoothed out
and the surface gets closer to a sphere. At this point, since
the sign of F used in our method is same with that of F =
−κ, we can say that the surface evolves to be a uniformly
curved surface compared with adjacent voxels with keeping
smoothness on the boundary of holes by our method. Since
a voxel far from a surface is larger than one near a surface,
the curvature far from the original surface gets smaller than
that near a surface.

κ > 0κ < 0

+

+ +

+

+ + +

+

+

_

__

_ _ _

_

_

_

Figure 4. The sign of the signed distance is same
with the curvature κ.

As described in the previous section, the SDF may oscil-
late. The reason is regarded to be that the magnitude of F
does not depend on the curvature. Thus, it is necessary to
adjust parameters α and ε to stop oscillation. In our practi-
cal method, we adjust β instead of ε. If β = 0.5, we accept
only a completely planar surface around the voxel, and if
we increase β, it is namely that we accept a curved surface.

7 Experiments
We experimented having our proposed method imple-

mented using Intel Xeon 2.4GHz processor with 1GB mem-
ory. We first tested our algorithm to take the consistency of
signed distances with adjacent voxels using a small object.
In Figure 2, the signed distances around sharp corners are
unstable to noises. We applied our new method to the SDF
of the object, and obtained the model shown in Figure 5.
Since we took the consistency of the signed distances of the
adjacent voxels, we removed erroneous vertices and trian-
gles from the generated mesh model at the same time as we
filled holes on the original surface (see Figure 5(a),(c) and
(d)). We can see that our method successfully removed the
wrong signs from Figure 5(b) and (e), which are 2D slice of
the SDF after applying our method.

Now, we compare our method with Davis’s method [6].
First, we converted the mesh model of this object shown
in Figure 2(c), which has a lot of holes, to the volumet-
ric representation of Davis’s method by a tool provided by
Allen [1]. We adjusted the parameter so that the size of vox-
els after conversion was the same as the original one. Figure
6 shows the result of hole filling by the method. Figure 6(a)
and (b) are the resulting mesh model after 100 and 300 iter-
ations, respectively. There are improbable surfaces around
the sharp corners even after 300 iterations. Figure 6(d) is
a slice of the volumetric representation of (b). Since it is
obvious that the implicit surface around the top-left corner
is collapsed, the correct mesh model is not generated. We
suppose that the reason for this is that the method does not
consider the consistency of the isosurface.

The SDF used by our method is divided to 128 × 128 ×
128(= 221) voxels in the finest resolution; however, since
we use voxels of adaptive resolution, the total number of
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Figure 5. Result of taking consistency of the SDF

voxels is 130,521. We constructed a consistent SDF by 20
iterations. In this experiment, we set α to 1, and increased
β according to βn+1 = 1.01βn at time n, if the number of
flipped voxels did not decrease. We started with β = 0.5
and finally β became 0.52. The number of flipped vox-
els was reduced quickly at the beginning, and it was much
smaller than the total number of voxels. Thus, the reduc-
tion of computation by using the database of flipped voxels
worked effectively. The total time of our method was 5.72
seconds for 20 iterations, while Davis’s method took 51.4
seconds for 300 iterations.

Next, we experimented hole filling of the unobserved
surface of the Great Buddha of Kamakura. Before taking
the consistency of the SDF, we got models shown in Fig-
ure 8. Figure 8(a) is a 2D slice of the SDF, and (b) and (c)
are rendering results of the SDF directly by volume render-
ing [8]. Since the range images have a lot of holes, which
are shown in Figure 8(d),(e) and (g), undesirable surfaces
are generated if we use all inconsistent voxels (Figure 8(f)
and (h)).

After taking the consistency of the SDF, we obtained the
model shown in Figure 9. Figure 9(a) is a 2D slice of the
SDF and (b) and (c) are results of volume rendering. We
could now successfully fill holes of the model by convert-
ing the SDF to a mesh model. Figure 9(d),(f) and (h) were
rendered with triangles, and (e) and (g) are the wire-frame
representations. Because we used voxels in adaptive resolu-

(a) (b)

(c) (d)

Figure 6. Result of hole filling by Davis’s method

tion, large triangles were generated to fill large holes using
marching cubes with voxels of adaptive size [13].

The SDF of the Buddha model has 1024× 1024× 1024
voxels in the finest resolution while the actual number of
voxels is 17,024,273. Figure 7 shows the relationship be-
tween the number of flipped voxels and the time for each
iteration, α and β; the scales of the number of voxels and
computational time are logarithmic. After the first iteration,
the computational time was drastically reduced because we
restricted voxels to be examined by the method described
in Section 5. In this experiment, we increased both α and
β according to αn+1 = 1.05αn if Nn ≥ 0.95Nn−1, and
βn+1 = 1.01βn if Nn ≥ Nn−1, where Nn is the num-
ber of flipped voxels at time n. We gradually relaxed the
condition by increasing α because the number of flipped
voxels would be reduced much too fast if we increased only
β. Flipping signs was iterated 97 times and the total com-
putational time was about 14 minutes. The memory was
used about 550MB at maximum. The number of trian-
gles and surface area after complementing the model was
5383549 and 402.75m2 while those of the original model
were 5241486 and 329.23m2. (The height of the Buddha is
11.3m.) Thus, our algorithm efficiently fill holes with little
additional triangles.

8 Summary
We have proposed a novel method to fill holes of a 3D

model. Though the signed distance field, which is com-
puted from an incomplete mesh model, has inconsistencies
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Figure 7. The relationship between the number of flipped voxels and the computational time, α and β. The scales of
the number of voxels and computational time are logarithmic.

for the signs of neighbor voxels because it becomes unsta-
ble around the holes of range images, our new method takes
a consensus of the sign distances by estimating the consis-
tency of those of the adjacent voxels. Consequently, the
final SDF becomes consistent and we efficiently comple-
mented an incomplete model by hole filling using the con-
sistent SDF.
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Figure 8. The SDF and mesh models of the Great Buddha of Kamakura before taking consistency of SDF
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Figure 9. The models after taking consistency of the SDF of the Buddha


