Goal and approach

Realizing offline augmented telepresence (AT) system in wide outdoor environment using aerial views

Registration problems between real and virtual worlds
- Geometric registration
- Photometric registration

Geometric registration: Aligning omnidirectional images

Photometric registration: Rendering augmented images

Capturing omnidirectional video

Geometric registration

1. Camera position and posture estimation using structure-from-motion (SfM) and GPS measurement [Yokochi, et al.]
 - Estimation process uses only video.
 - Accumulative errors appear.
 - Scale factor is unknown.

2. Alignment of the omnidirectional images
 1. Omnidirectional images are mapped on a sphere.
 2. The sphere is rotated by R^{-1}_i: Estimated posture of OMS R_i: Estimated posture of OMS

3. Posture refinement of OMS
 1. Optical-flows near the horizon of two consecutive frames on aligned video are calculated.
 2. 3DOF rotation of two consecutive frames R_{xy} is estimated by minimizing an energy function defined as the sum of squares of lengths of the optical-flows mapped on the sphere.
 3. $R_{xy} = R_{xy}$ is multiplied with posture of OMS.
 4. The processes are applied to the whole sequence.

Photometric registration

1. Alignment of the aligned video are calculated.
2. Parameters in All Sky Model [Igawa, et al.] are estimated from the unified image.
3. Intensities in the missing area are copied from the estimated model.

View-dependent perspective images

Captured omnidirectional image

Captured augmented image

Augmented Reality (AR) beyond time

Telepresence beyond space

Augmented Reality (AT) beyond time and space

Capturing omnidirectional video

Unmanned airship
- Length: 12m
- Payload: 15kg
- Max. speed: 50km/h

The largest battery-powered unmanned airship in the world.

Equipped
- Omnidirectional Multi-camera System (OMS)
- Ladybug3 (Point Grey Research, Inc.)
- Differential GPS
- P4-GPS (Hitachi Zosen Corp.)
- Fiber-optic gyroscope

Environmental maps for Image-based-lighting (IBL)

1. An area similar to the missing area is searched from previous frames using SSD criterion.
2. Intensities of corresponding pixels are copied to the missing area.

Other applications

Map, Landscape simulation, etc.

