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Inverse Dynamics for Action Recognition
Al Mansur, Yasushi Makihara, and Yasushi Yagi

Abstract—Pose-based approaches for human action recognition
are attractive owing to their accurate use of human motion in-
formation. Traditionally, such approaches used kinematic features
for classification. However, in addition to having high dimensions
and a small interclass variation, kinematic features do not consider
the interaction of the environment on human motion. In this
paper, we propose a method for action recognition using dynamic
features, derived by applying inverse dynamics to a physics-based
representation of the human body. The physics-based model is
articulated and actuated with muscles and consists of joints with
variable stiffness. Dynamic features under consideration include
the torques from the knee and hip joints of both legs and, im-
plicitly, gravity, ground reaction forces, and the pose of the re-
maining body parts. These features are more discriminative than
kinematic features, resulting in a low-dimensional representation
for human actions, which preserves much of the information of
the original high-dimensional pose. This low-dimensional feature
achieves good classification performance even with a relatively
small training data set in a simple classification framework such
as a hidden Markov model. The effectiveness of the proposed
method is demonstrated through experiments on the Carnegie
Mellon University motion capture data set and Osaka University
Kinect action data set with various actions.

Index Terms—Action recognition, dynamics feature, hidden
Markov model (HMM), physics-based model.

I. INTRODUCTION

THE recognition and interpretation of human actions and
activities have sparked considerable interest in the com-

puter vision research community, owing to the large num-
ber of potential applications in video retrieval, surveillance,
human–computer interaction, robot learning and control, and
imitation learning.

Depending on the way features are extracted, human action
recognition approaches are roughly classified into two types,
namely, appearance- and pose-based approaches.

In appearance-based approaches, features commonly used
for action recognition include shape [1], [2], optical flow [3],
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[4], point trajectory [5], [6], and joint angle [7]. Most of
these features encode the kinematics of human motion, and in
general, they are high dimensional. Recognizing human actions
from a video is a challenging task [8]. First, it is difficult
to identify an action independently of the viewing direction.
Second, extracting stable features is complicated owing to noise
or the weakness of the feature extraction method itself.

On the other hand, pose-based approaches [9]–[16] usually
employ the joint angles, point trajectories, or other motion in-
formation of the human body and its parts to model the dynam-
ics of an action, thereby overcoming many of the limitations
of appearance-based approaches. However, accuracy of these
methods largely depends on the accuracy of the human pose
tracking. Tracking all the body parts accurately is a nontrivial
task. Compared with the upper body parts, tracking the lower
body parts (e.g., legs) is much easier as several constraints can
be imposed (such as ground contact and limited degrees-of-
freedom) for common human actions. Recently, tracking using
low-cost depth-measuring devices such as Kinect (TM) has
become popular [17]–[19]. The accuracy of the tracking results
obtained by these approaches is adequate for human action
recognition, and therefore, pose-based approaches have become
easier to deploy.

Traditional pose-based approaches use kinematic features
only, making it very difficult to distinguish certain actions. In
general, for many actions, kinematic features are high dimen-
sional with a small interclass variation. Moreover, they do not
consider the interaction of the environment on human motion.
Recently, physics-based models have been successfully used
for 3-D people tracking [20], [21]. These physics-based models
provide parameterizations for effective modeling of plausible
poses and motions. In addition, they are capable of capturing
the influence of gravity, ground contact, and other physical
interactions with the environment on pose and motion. In a
related work [22], internal joint torques and external forces
were recovered from the observed motion in a different problem
setting.

Inspired by these works, we attempt using dynamic features
obtained from a physics-based model of the human body for
human action recognition. Use of dynamics allows us to repre-
sent an action by the torques and forces governing the human
motion. We believe that features of this kind will result in a
more discriminative feature.

The main contribution of this paper is that we represent
actions using dynamic features, i.e., joint torques, which have
several advantages over kinematic features. First, these features
are more discriminative than kinematic ones. Second, they
provide a low-dimensional representation of the actions, which
is necessary in many cases to deal with the limited number
of training data. We consider only the lower body torques for
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action representation as these implicitly include configurations
of the other limbs of the body and external forces acting on the
body such as gravity and the ground reaction force (GRF). In
most actions, the human body remains in an upright position
with the legs supporting the body. As a result, the upper body
parts have a greater influence on the dynamics of the lower body
parts, whereas the lower body parts usually have little influence
on the dynamics of the upper body segment. As such, we chose
to use the lower body torques for action recognition. Due to the
low-dimensional representation, we can use a simple learning
and classification framework, e.g., the standard hidden Markov
model (HMM) to achieve good classification performance with
a small number of training data. Our experimental results using
the Carnegie Mellon University (CMU) motion capture data
set and the Osaka University Kinect action data set reveal that
dynamic features provide good discrimination over different
actions.

For joint torques computation, we used a generic inverse
dynamics approach formulated in Lagrangian equations of mo-
tion. This is a common practice used in inverse dynamics of
multibody systems. Ref. [23] uses the same approach for cre-
ating realistic human motion based on space–time optimization
that minimizes the total muscle torques according to an actor’s
relative preference. We used a similar biomechanical model
as used in [23]. However, another valid model with different
parameters (e.g., [21]) should work in our method as long
as the computed torques show the discriminativeness among
different actions. In addition, we admit that HMM-based action
classification is not new. However, we used this framework to
show that the dynamic features are effective even when a simple
classification scheme such as HMM is used.

This paper builds on a previous work [24], and we have
expanded the database, techniques, and experimental results to
show the effectiveness of the proposed method. In particular, we
have included passive joint parameters (springs and dampers)
in the articulated model to make the computed torques more
realistic. In addition, we present evaluation results on a motion
data set captured by a simple and inexpensive setup consisting
of a Kinect (TM) and an RGB camera.

The organization of this paper is as follows. Following the
literature review on human action recognition in Section II,
Section III introduces the dynamic feature extraction process.
Sections IV and V present the HMM-based classification
framework and the experimental results, respectively, for two
different data sets. Finally, Section VI concludes this paper and
discusses future work.

II. RELATED WORK

Human action and activity recognition has been an active
area of research in the field of computer vision for more than
two decades. As such, a large amount of literature exists.
Comprehensive reviews of these works are presented in several
survey papers [8], [25]. In this section, we limit our discussion
to some of the papers most closely related to our research.
Although many different approaches exist, action recognition
algorithms can be mainly categorized into two categories,
namely, appearance- and pose-based approaches.

A. Appearance-Based Approaches

Appearance-based approaches learn the appearance model of
the human body or some of its body parts and try to match this
to images in a test scene for action or gesture recognition. We
can further categorize appearance-based approaches for human
action recognition according to the action representation. Some
of the most popular representations include learned geometrical
models of human body parts, spatiotemporal templates, appear-
ance or region features, shape information, interest-point-based
representations, and motion/optical flow patterns. In the follow-
ing paragraphs, we provide a brief summary of the related work.

In [26] and [27], using appearance-based features, actions are
learnt by an HMM or other variants thereof. The appearance-
based approach works well for gesture recognition since the
overall appearance of the human hand does not change much in
different people. However, these methods do not work well for
whole body actions as they cannot handle the problem brought
about by changes in clothing or appearance.

Shape-based representations utilize silhouettes of the human
body [1] or the features derived from these silhouettes [2]. The
basic idea behind shape-based representations is that an action
consists of a sequence of poses that can be detected in a single
frame. Usually, recognition is based on a single frame; however,
to improve robustness, it may be extended to multiple frames. In
[28], a silhouette-based representation was enhanced to charac-
terize the outline of the human body in the space–time domain.
This resulted in a spatiotemporal 3-D volume, constructed by
stacking the silhouettes detected in each frame. Shape-based
approaches work well on a number of actions. However, they
also suffer from the problem of silhouette variations owing to
clothing changes or imperfect segmentation.

Another class of works uses volumetric analysis of the
video for action recognition [28]–[30]. Yilmaz and Shah [29]
used spatiotemporal features to exploit both shape and motion
features simultaneously, whereas Blank et al. [28] extended a
method developed for analysis of 2-D shapes to deal with vol-
umetric spatiotemporal shapes induced by human actions. The
main advantage of the volume-based approach is that it is not
necessary to build complex models of body configuration and
kinematics. In addition, recognition can be directly performed
using raw video.

Recently, interest-point-based representations have attracted
considerable interest in action recognition research. They use
spatiotemporal interest points and their trajectories for action
and activity analysis [31]–[36]. The main strength of this rep-
resentation is its robustness to occlusion since there is no need
to track or detect the whole human body. In [37], performance
of the space–time features was evaluated in a common experi-
mental setup and concluded that for human action recognition,
performance of regular sampling of space–time features is
better than the other tested space–time interest point detectors.
In another evaluation work [38], performance and computa-
tional efficiency of several part-based approaches of feature
detection and feature description methods were evaluated in
a human action recognition scenario. Using KTH action data
set, it was found that the feature detection method in [33]
combined with the improved LBP-TOP descriptor achieved the
best recognition accuracy with low computational cost.
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A number of researchers [3], [4], [33], [39]–[41] have used
features based on motion and optical flow for action recog-
nition. Bobick and Davis [39] proposed the motion energy
image (MEI) to describe the cumulative spatial distribution
of motion energy in a given sequence. Later, the idea of the
MEI was extended to a motion history image (MHI) [42]. In
optical flow-based approaches [3], [4], optical flow is used to
derive a representation that is suitable for recognition. It was
shown in [42] that MEI and MHI yield good discriminative
performance for some specific simple action classes. However,
it was reported in [40] that MEI and MHI show unsatisfactory
performance for complex actions owing to overwriting the
motion history.

B. Pose-Based Approaches

Pose-based approaches [9]–[14] usually rely on human body
pose tracking to model the dynamics of body parts and exploit
these models for action recognition. Sheikh et al. [9] expressed
an action as a linear combination of spatiotemporal actions
and proposed a framework for learning the variability of the
execution of human actions that is unaffected by the changes.
Using both motion capture and video data, Ikizler and Forsyth
[10] proposed a generative model to query complex activities
in a large collection of videos. Instead of inferring a 3-D pose
in each frame of an action sequence, Lv and Nevatia [11]
searched for a series of actions that best matched the input
sequence and proposed an action representation scheme called
Action Net, which inherently models the contextual constraints
for action recognition. Embedding low-level shape and optical
flow features into a high-level graphical model representation,
Natarajan and Nevatia [12] presented an approach for simulta-
neous tracking and event recognition. Fanti et al. [13] proposed
a hybrid probabilistic model for human motion recognition that
combines global features (e.g., translation) with local variables
(e.g., relative positions and appearance of body parts). Yilmaz
and Shah [14] extended the standard epipolar geometry to the
geometry of dynamic scenes for recognizing human actions in
videos acquired by uncalibrated moving cameras. In a differ-
ent problem setting, Kilner et al. [43] proposed a technique
for automatic matching of human activities in outdoor sports
broadcast environments. This technique is based on the analysis
of recorded 3-D data of human activity and retrieving the
most appropriate proxy action from a motion capture library.
However, these approaches use kinematic information only to
model human actions, which is not discriminative enough for
many actions.

Only a few approaches employ sensors in feature extraction
for action recognition. In these sensor-based approaches, hu-
man action is usually described by the output signal obtained
from sensors either attached to the human body or installed
in the environment (excluding cameras and depth sensors).
In [44], an effective subject recognition approach is designed
using GRF measurements of human gait. In [45], Yang et al.
proposed an action recognition system using wearable motion
sensor networks. In addition, there are several works that use
acceleration data obtained from sensors [46] for action recog-
nition. The main disadvantage of the sensor-based methods is

Fig. 1. Overview of our approach.

that subjects either need to wear certain specialized devices
or sensors or they have to perform the action in a specialized
environment.

In summary, our proposed framework differs in three ways
from previous representations. First, from the human motion,
we compute the joint torques using a physics model. These
features are more discriminative than kinematic features, and
they can distinguish those actions that are very similar in
terms of kinematic features. Second, information on ground
interaction is encoded in the torques since the computation of
the torques depends on external forces. Third, we use a low-
dimensional representation of human actions, which allows us
to achieve good classification performance with a relatively
small training data set in a simple classification framework such
as an HMM.

III. OUR APPROACH

A. Overview

The overview of our approach is shown in Fig. 1. The
approach is divided into two parts: 1) learning; and 2) classi-
fication. In the training part, motion capture data from several
persons performing each action were used as input data. Motion
capture data contain joint angle trajectories of various joints of
the articulated human body. Using these joint angle trajectories,
we compute torques at different joints of the body using inverse
dynamics (see Section III-C). These joint torques are used in
an HMM framework to learn the action models for each action.
Then, in the classification part, we are given motion capture
data from an unknown action, and our task is to predict the
correct label. To do this, we again use inverse dynamics and
compute joint torque corresponding to the given motion data.
Now, we can use the previously learnt action models to predict
the class label of the input motion.

B. Kinematic Model

Our 3-D articulated human body model (see Fig. 2) consists
of 12 rigid body segments with a total of 26 degrees of freedom
(DOF). We use three kinds of joints to link the segments to their
parent segments: 1-DOF (hinge), 2-DOF (saddle), or 3-DOF
(ball and socket) rotational joints. The position and orientation
of the root segment are defined in world coordinates by a
6-DOF global joint. All segments are approximated by sticks of
appropriate lengths. We use identical lengths of body segments,
mass, and inertial parameters [47] for all subjects and actions.
We estimate the internal joint torques by applying 3-D motion
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Fig. 2. (a) Kinematic model. (b) DOF of each part.

capture data to the model using the method described in the
next section. Note that, since we are not dealing with a tracking
problem in this paper, we assume that the pose tracking data
are available to us. This is a realistic assumption, as current
markerless tracking algorithms can provide accurate tracking
results [17], [19], [48], [49].

C. Recovery of Torques Using Inverse Dynamics

The Lagrangian equations of motion, which include the
effect of generalized forces associated with a DOF qj , can be
written as [23] ∑

i∈N(j)

d

dt

∂Ti

∂q̇j
− ∂Ti

∂qj
= Qj (1)

where Ti is the kinetic energy of body segment i, N(j) is the
set of body segments in the subtree of a joint’s DOF qj , and Qj

is the total generalized force acting on qj . The kinetic energy of
body segment i can be found as

Ti =
1

2
tr

(
Ẇ iM iẆ

T

i

)
(2)

where W i is the complete transformation from the root of the
skeleton to segment i, and M i is the mass tensor of body
segment i. Now, the terms on the left-hand side of (1) can be
written as

d

dt

∂Ti

∂q̇j
− ∂Ti

∂qj
= tr

(
∂W i

∂qj
M iẄ

T

i

)
. (3)

The total generalized force Qj acting on DOF qj is the sum of
various component forces and is given as

Qj = Qmj
+Qgj +Qpj

+Qrj (4)

where Qmj
, Qgj , Qpj

, and Qrj represent the generalized
force due to muscles, gravity, passive element in the joints,
and ground reaction, respectively. These component forces are
computed as follows.

D. Gravity

As a result of gravity, a constant force mig acts on the center
of the mass of each body part i. The generalized force at joint
DOF qj due to the effect of gravity is computed as [23]

Qgj =
∑

i∈N(j)

(
∂W i

∂qj
ci

)
· (mig) (5)

Fig. 3. Spring constant for different states of a joint: (a) at rest, Qp = 0;
(b) flexion, Qp = −ks1(q − q̄)− kd(q̇); and (c) extension, Qp = −ks2(q −
q̄)− kd(q̇).

Fig. 4. Model for computing GRF.

where ci is the center of body segment i (expressed in local
coordinates), mi is the mass of body segment i, and g is the
acceleration due to gravity.

E. Joint Forces

Due to stretching of opposing muscles, tendons, and lig-
aments, passive joint forces are developed at different joints
of the articulated human body model. Tendons are a kind
of stretchy tissue that connects muscles to bones, whereas
ligaments are a kind of fibrous tissue that joins adjacent bones
across a joint to keep the joint in place. The combined effect
of these muscles, tendons, and ligaments can be modeled as
a spring and damper combination. The resulting force due to
these passive elements can be described as [23]

Qpj
= −ksj (qj − q̄j)− kdj

q̇j (6)

where ksj , kdj
, and q̄j are the spring constant, the damping

constant, and the resting angle of the joint, respectively. Each
joint is characterized by two different spring constants ks1j and
ks2j : one for flexion and the other for extension (see Fig. 3).

F. GRF

Since the estimates of the internal torques strongly depend on
the external forces, we need to consider these forces to recover
the joint torques. We consider foot contact only, i.e., GRF is cre-
ated only when the foot is in contact with the ground. We model
the foot ground contact with a damped linear spring modulated
by two sigmoidal functions [22] (see Fig. 4). One sigmoid
is used to prevent forces from being applied when point p
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Fig. 5. Knee and ankle torques with the same lower body but different upper body motions. (a) Action 1. (b) Action 2. (c) Developed torques in action 1.
(d) Developed torques in action 2.

(on the foot) is far from surface S, whereas the other sigmoid
prevents forces that pull the foot when it moves away from the
ground. The GRF acting on p is given by

Qrj = h(−60h(q))h(5nc)nc
∂h(q)

∂qj
(7)

where h(x) = (1/2)(1 + tanh(x)) is the sigmoidal function,
and nc is the normal spring force. ∂h(q)/∂qj projects the
normal force into the space of qj . nc is given by

nc = −κN

(
h(q)− h̄

)
− δṗTns (8)

where κN is the stiffness of the spring, h̄ is the resting length of
the spring, δ is the damping coefficient of the damper, and ns

is the unit normal of S at the point on S closest to p. The first
term denotes the force due to the spring, whereas the second
term denotes that due to the damper, which depends on the
velocity of point p. Given a motion vector X with joint angle
configurations q and ground contact forces, the joint torques

(muscle forces) Qmj
at time t can be computed from (1) and

(4) as a function of the motion X

Qmj
(t,X) =

∑
i∈N(j)

d

dt

∂Ti

∂q̇j
− ∂Ti

∂qj
−Qgj −Qpj

−Qrj .

(9)
These joint torques are used as features in our proposed action
recognition framework.

G. Low-Dimensional Representation

Torques computed on the lower body joints (e.g., knees and
hips) depend on the pose or motion of the upper body limbs.
Fig. 5 demonstrates this phenomenon. In Fig. 5(a) and (b), the
human body is depicted stretching up from an almost sitting
to an almost standing position. Although knee and hip motions
are the same in both cases, the motion and initial posture of
the upper body are different in each case. The upper body from
the hip is represented by an inverted pendulum connected to the
hip. The lumped mass is located as the center of mass of the
upper body. In each case, the computed torques considerably
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Fig. 6. Action samples from the CMU data set. (a) Walk. (b) Run. (c) March. (d) Sit. (e) Jump forward. (f) Jump in place. (g) Hopping.

differ [see Fig. 5(c) and (d)]. If these two motions represent
two different actions, we can distinguish them with the help
of lower body torques. Thus, we obtain a discriminative low-
dimensional representation of the actions, which is the advan-
tage of using dynamic features over kinematic features.

IV. CLASSIFICATION FRAMEWORK

An HMM is a good probabilistic framework for modeling the
dynamics of human action [26]. It can deal with sequential data
and handle timescale changes in the data during recognition.
In our HMM configuration, we have one hidden state variable
S, and each state of this variable can emit a vector-valued
observation O (torque) according to the continuous output
probabilities, i.e., B = {bi(Ot)} = {P (Ot|St = i)}, for i =
1, . . . , N , where N is the number of states. Output density
function bi(Ot) is given by a mixture of multivariate Gaussian
(vector observation) distributions

bi(Ot) =

M∑
m=1

cimN (Ot;μim,Σim) (10)

where M is the number of mixture components in the Gaussian
mixture; N (· · · ;μim,Σim) is a multivariate Gaussian distribu-
tion for the mth component whose mean and covariance matrix
are μim and Σim, respectively; and cim is the weight of the
mth component, subject to

∑M
m=1 cim = 1.

This model is based on two dependence assumptions:
1) hidden variable St at time t depends only on the hidden
variable in the previous time step St−1; and 2) observation
variable Ot at time t depends only on St. During the training
step, the model learns the parameter set λ = {A,B, π} consist-
ing of prior probabilities π = {πi} = {P (S0 = i)}, transition
probabilities A = {aij} = {P (St = j|St−1 = i)}, and the ob-
servation probabilities B = {bi(Ot)} = {P (Ot|St = i)} for
all states using the available observed data. Learning the pa-
rameters of these distributions means optimizing the model pa-
rameters (A,B, π) and, thus, maximizing the joint probability
P (O, S). For each action class k, we learn a separate HMM
model λk, k = 1, 2, . . . , C. The expectation maximization al-
gorithm is used for these estimations.

During recognition, for a classifier with C classes, we choose
the model that best matches the observations from the C HMMs

λk = {Ak, Bk, πk}, k = 1, . . . , C. In other words, given a test
observation sequence O1:T , we select the class label as

c = argmax
k

P (λk|O1:T ) (11)

where P (λk|O1:T ) is the probability that the observed se-
quence is generated by λk, which is recursively computed
using the Viterbi algorithm. Using low-dimensional torque and
joint angle trajectories, we can successfully learn good models
from a relatively small training data set with a simple HMM
framework.

V. EXPERIMENTS

A. Data Set

Experiments were performed on two different data sets
containing 3-D motion capture sequences. The first was CMU
mocap data set [50], whereas the second was Osaka University
Kinect action data set created in our laboratory using a
Kinect (TM).

CMU Data Set: Fig. 6 shows some typical sequences of
seven actions from this data set. In total, we used 171 sequences
of seven action classes, namely, walk, march, run, sit, jump
forward, jump in place, and hop with 27, 21, 25, 21, 25, 32,
and 20 instances, respectively. All seven classes have significant
intraclass variations in terms of speed and style. In addition,
for some actions, the interclass variation is very low. For
example, the joint angle trajectories for walk–march and jump
in place–hop pairs are quite similar for some sequences. Walk,
march, and run classes have variations in terms of speed, stride
length, bounce, and arm swing. In the sit class, the subjects
move their legs randomly after sitting on a stool. This results
in uncorrelated knee joint angles. In the case of jump forward
and jump in place sequences, the knee and hip joint angles have
good similarity, and sometimes, these actions are difficult to dif-
ferentiate if translational motion of the body is not considered.
In summary, all the action classes contain significant intraclass
variations, and therefore, this is a very challenging data set. For
evaluation, we used about 2/3 of the samples for training, with
the remaining samples for testing.

Osaka University Kinect Action Data Set: This data set
(available at [51]) was constructed in our laboratory using a
Kinect (TM) and tracking on the depth sequence. Pose tracking
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Fig. 7. Sample images from the Osaka University Kinect action data set. (a) Jack 1. (b) Jack 2. (c) Jump both legs. (d) Jump right leg. (e) Jump left leg. (f) Run.
(g) Walk. (h) Side jump. (i) Skip left leg. (j) Skip right leg.

Fig. 8. Sample depth images from the Osaka University Kinect action data set. (a) Jack 1. (b) Jack 2. (c) Jump both legs. (d) Jump right leg. (e) Jump left leg.
(f) Run. (g) Walk. (h) Side jump. (i) Skip left leg. (j) Skip right leg.

from the depth sequence was accomplished by a commercial
motion capture software application [52]. This data set consists
of 10 action classes with each action performed by eight sub-
jects. These actions were recorded with a single Kinect (TM)
and an RGB camera with frame size of 640 × 480 pixels. The
frame rates for the Kinect (TM) and the RGB camera were
30 and 60 frames/s, respectively. The setup for motion capture
was very simple and did not require any specialized environ-
ment or marker attachment. Examples of the RGB and depth
sequences are shown in Figs. 7 and 8, respectively. Pose track-
ing obtained from the depth image sequences is used by the
proposed method and the kinematics-based baseline method.
On the other hand, the RGB image sequences are used by
appearance-based baseline methods [53], [54]. The background
and illumination conditions remain unchanged for all actions,
thereby ensuring the fairness of the data set in application to
appearance-based methods. Action types recorded are jumping
jack type 1, jumping jack type 2, jumping on both legs, jumping
on right leg, jumping on left leg, running, walking, side jumps,
skipping on left leg, and skipping on right leg. These actions
are very challenging owing to the small intraclass variations.
We used a leave-one-subject-out cross-validation setting, with

action sequences from seven subjects used for training and
sequences of the remaining subjects used for testing.

B. Baseline Methods

We compared the results of the dynamic feature-based ap-
proach using three different baseline methods. The first method
used joint angle features and the same HMM classifier. For
this baseline method, we used two different feature sets for the
experiments with the CMU data set. The first set comprised
the six principal components obtained by reducing the original
26 dimensional joint angles by principal component analysis
(PCA). More than 98% of the variance was accounted for by
these six principal components. For the second set, we manually
selected two knee joint angles and two hip joint angles. These
particular joint angles have good consistency for a particular ac-
tion class, whereas the other joint angles are noisy. Dimension
reduction was necessary to avoid difficulty in learning a good
model from a relatively small training data set. On the other
hand, eight dimensional joint angle trajectories from both legs
were used for the experiments with the Osaka University Kinect
action data set.
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Fig. 9. Confusion matrices for the CMU data set. (a) Joint angle (six dimensions, using PCA). Average recognition rate is 78.4%. (b) Joint angle (four
dimensions). Average recognition rate is 85.4%. (c) Joint torques (four dimensions). Average recognition rate is 95.7%. (d) Joint torques (four dimensions,
computed from noisy joint angles). Average recognition rate is 90.4%.

We chose two other methods [53], [54] as additional baseline
methods for comparison. Since code for these two methods
is available online, we could test these methods on our own
data set.

C. HMM Parameter Selection

To fine-tune the parameters of the HMM, we used tenfold
cross validation. We tuned the number of states Ns and the
number of mixture components K for the best performance. For
the experiments with joint torques, we used K = 3 and Ns = 3.
In the case of joint angles, we used K = 4 and Ns = 2 for the
best classification results.

D. Results on the CMU Data Set

The classification results obtained using our approach and
those using kinematic features are shown in Fig. 9. To produce
the results, we computed the average over 10 runs with ran-
dom permutations of training sets. Using dynamic features, we
achieved mean accuracy of 95.7% on the entire data set. Walk,
march, jump forward, and hop action classes were classified
with 100% accuracy. There was some confusion in classifying
sit, which was confused with jump in place (20%). The other
confused actions are negligible (≤ 3%). This is reasonable
performance considering the similarity between these actions.
Using the baseline method, we obtained mean classification
accuracy of 78.4% in the first case (PCA reduced, six compo-
nents) and 85.4% in the second case (four joint angles). Using

dynamic features therefore outperforms both of these feature
sets. These results also demonstrate that PCA-selected features
are not sufficiently robust for discrimination. Confusion matri-
ces for the kinematic features are shown in Fig. 9(a) and (b).

In the case of kinematic features, there was significant confu-
sion during the classification of the run, sit, jump forward, and
jump in place classes. However, the confusion was relatively
small in the case of the dynamic features.

To evaluate the discriminative power of the dynamic and
kinematic features, we compared some of these features for two
action pairs: 1) jump forward and jump in place [see Fig. 10(a)];
and 2) run and march [see Fig. 10(b)]. It can be seen that
the interclass distance is small in the case of joint angles,
whereas the distance is larger in the case of the joint torques. We
observed that the PCA-reduced kinematic features also showed
poor discrimination.

We also carried out another set of experiments to test the
robustness of the proposed method in the case of noisy mo-
tion capture data. To simulate noisy measurements, we added
Gaussian noise to all joint angles. However, for the vertical
distance of the foot from the ground, we used clean motion
capture data because accurate determination of the ground
contact event is required to compute the torques accurately.
In our method, we need to differentiate the joint angles to
obtain the angular velocities and accelerations. However, due
to the abrupt change in the noisy joint angles, we obtained
unrealistic values for velocities and accelerations. To overcome
this problem, we sampled the noisy joint angles at regular in-
tervals and reconstructed smoothed versions using polynomial
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Fig. 10. Comparison of joint angle and torque features. (a) Comparison of joint angle and torque features for two action classes (i.e., jump forward and jump in
place). (Top row) Knee and hip joint torques; (middle row) knee and hip joint angles; and (bottom row) first and second principal components of PCA-reduced
joint angles. (Red) Jump forward; (blue) jump in place. The computed torques were not calibrated, and therefore, absolute units are not used. (b) Comparison
of joint angle and torque features for two action classes (i.e., run and march). (Top row) Knee and hip joint torques; (middle row) knee and hip joint angles;
and (bottom row) first and second principal components of PCA-reduced joint angles. (Red) Run; (blue) march. The computed torques were not calibrated, and
therefore, absolute units are not used.

curve fitting. With these noisy joint angles, we computed the
joint torques, with mean classification accuracy of 90.4%. The
confusion matrix for this experiment is shown in Fig. 9(d). This
result gives an idea of the performance of a method using the
output of a tracker. In addition, it should be noted that even with
the noisy data, dynamic features outperformed the kinematic
features without noise.

E. Results on the Osaka University Kinect Action Data Set

For the evaluation on this data set, we used the joint
angle trajectories with both the proposed method and the
kinematics-based baseline method. The proposed method
uses the computed torques from these trajectories, whereas the
kinematics-based method uses the trajectories directly. The 8-D
feature (joint angle or joint torque) obtained from the two
hip joints (X and Z DOF) and two knee joints (X and Z DOF)
was used. Upper joint trajectories were not used due to noise
and errors in the tracking. For the other baseline methods
[53], [54], which use appearance-based features, color images
were used.

Confusion matrices for the proposed and baseline methods
are shown in Fig. 11. Based on the results, it is clear that the
appearance-based methods poorly perform on this challenging
data set because many of the actions are very similar with
respect to the appearance-based features. As expected, the
joint angle feature performs much better, although there is still
confusion between a few of the actions. For example, with

regard to the kinematic features alone, the following action
pairs produced similar joint angle trajectories: skip left–jump
left leg and side jump–jack 2. Based on the results, there is
obvious confusion between these action pairs. Using dynamic
features, however, reduces such confusion, and the superiority
of the dynamic features is clear from these results.

In our current implementation using MATLAB, the system
takes a few seconds to compute the torques from an action
comprising about 100 frames. However, processing could be
made faster by using a more efficient code, for example, by
implementing it in C/C++.

VI. CONCLUSION

In this paper, we have introduced dynamic features to realize
the idea of employing a physics model for human action recog-
nition. These dynamic features are computed from the available
kinematics together with the known mass and inertia properties
of the human body. Using these features, we expressed action
classes in terms of hip and knee joint torques and used these
torques for action recognition. The low-dimensional represen-
tation enabled us to achieve good classification accuracy with a
small training data set. We carried out experiments on the CMU
motion capture data set and the Osaka University Kinect action
data set containing different human actions and demonstrated
the superiority of dynamic features over kinematic features and
other appearance-based methods.
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Fig. 11. Recognition performance on the Osaka University Kinect action data set. (a) Proposed method. Average recognition rate is 84.5%. (b) Kinematics
feature. Average recognition rate is 77.5%. (c) Li et al [55]. Average recognition rate is 46.6%. (d) Bregonzio et al [53]. Average recognition rate is 54.1%.
(e) Le et al [54]. Average recognition rate is 70.3%.

Future work may include investigating the use of dynamic
features for other application domains such as human gait
recognition.
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