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SUMMARY Conventional interest point based matching re-
quires computationally expensive patch preprocessing and is not
appropriate for plain objects with negligible detail. This paper
presents a method for extracting distinctive interest regions from
images that can be used to perform reliable matching between
different views of plain objects or scene. We formulate the corre-
spondence problem in a Naive Bayesian classification framework
and a simple correlation based matching which makes our sys-
tem fast, simple, efficient, and robust. To facilitate the matching
using a very small number of interest regions, we also propose a
method to reduce the search area inside a test scene. Using this
method, it is possible to robustly identify objects among clutter
and occlusion while achieving near real-time performance. Our
system performs remarkably well on different plain objects where
some state-of-the art methods fail. Since our system is particu-
larly suitable for the recognition of plain object, we refer to it as
Simple Plane Object Recognizer (SPOR).
key words: object recognition, interest point, interest region,

region matching.

1. Introduction

Interest point detection across images is essential in
many computer vision problems. The potential simi-
larities between two images can be achieved using the
local region matching technique, where the regions are
centered on the detected interest points. In the context
of object and scene recognition, local region matching
has many advantages over global matching because it
is more efficient to occlusions and viewpoint changes.
Local region matching has been used for broad category
of applications. Typical applications include image reg-
istration, and object detection [1, 4, 5].

Recognition of a particular object is one of the im-
portant applications of local region matching. SIFT [1]
is one of the most successful methods being used for
such applications. However, due to high computational
overhead, SIFT is not suitable for real-time applica-
tions. Moreover, performance of SIFT greatly depends
on the object type. For example, SIFT found only a
single match between the images shown in Figure 1
although lot of keypoints have been found in both im-
ages. The cause of failure of SIFT on this object is
that the approach used for SIFT is not robust enough
to extract stable keypoints form a plain object with
negligible texture/pattern content as shown here. In
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this paper, these types of objects are called ‘plain ob-
jects’. Plain objects usually do not have much detail.
Matching based on many popular interest point detec-
tors such as [6–8] perform poorly on plain objects.

In this paper we propose a method to extract inter-
est points from plain objects. Our approach to localize
the keypoints is similar to [3]. However, the approach
used in [3] for assigning orientation to the keypoints is
not suitable for plain objects. We propose a different
way of assigning orientations to keypoints that is appli-
cable to plain objects. In addition to the orientations,
we assign also a region lengths to the interest regions
which is very effective in region matching. We call our
system Simple Plain Object Recognizer (SPOR).

For region matching, our approach relies on an of-
fline training phase. In [3] multiple views of the key-
points to be matched are used to train randomized trees
[2] to recognize them based on a few pairwise intensity
comparisons. However, in SPOR we used simple inten-
sity features to train a simple Naive Bayesian classifier.
As in [3], we train our classifier by synthesizing many
views of the keypoints extracted from a training image
to deal with scale and affine change. As the regions
found in a plain object is quite similar, we also use a
correlation based region matching technique in parallel
to the Naive Bayesian classifier.

As the interest regions found in a plain object are
very plain and texture-free, many false matching hap-
pens with the interest regions found in the background.
If we could roughly estimate the location of the object,
then the number of false matches would significantly
reduce. We have developed a technique for represent-
ing a multicolor object using only a single color which
is included in SPOR to roughly segment a plain object
from the background and narrow down the search area.

It has been shown that SPOR is fast and works
well on plain objects. SPOR yields both real-time
performance and robustness to viewpoint and lighting
changes. This makes SPOR effective for real-time ob-
ject detection.

We might think that a plain object recognition is
easy compared to that for complex objects. However,
this may not be necessarily true, since the number of
available features is small as mentioned before. Any
single object recognition method might not work for all
objects. Therefore, we have proposed an object recog-
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nition method in which we classify object recognition
cases depending on the object complexity and other
attributes and recognition task, and use an appropri-
ate object recognition method for each case [10]. The
method proposed in this paper can be used for a case
in this framework to recognize plain objects in the task
to detect specific objects seen before.

We describe the interest region detection technique
in section 2. In section 3, we discuss the region match-
ing. Training procedure of the Naive Bayesian classi-
fier is discussed in section 4. In section 5 we present
the ways to to improve the recognition. We show the
results in section 6 and finally we draw conclusions of
our work in section 7.

Figure 1 Failure of SIFT to rcognize a plain object.

2. Definition of Plain Object

An object with following characteristics may be de-
noted as a plain object: (1) negligible texture content
(2) location of keypoints (SIFT, Harris and similar)
changes with the change of viewpoint and lighting con-
ditions (3) Negligible sharp corners and therefore pop-
ular corner detectors do not work. Some examples of
plain objects have been shown in Figure 2. To show the
weakness of SIFT for plain object matching, we perform
an experiment and show the result in Figure 3. In both
of the images we found many keypoints. However, not
a single match have been found.

3. Interest Region Detection

In our approach, we need to use a method to detect
interesting regions in a plain object. Conventional in-
terest point extraction methods such as Harris corner
detection, SIFT perform poorly on this type of objects.
We choose the method described in [3] to extract such
regions for its speed, simplicity and stability. Such re-
gions are identified by one or more so called keypoints.

The basic idea of [3] is to consider the intensities
along a circle centered on each candidate keypoint on
an interest region. Here intensities of two diametrically
opposed pixels on this circle are compared with that
of the candidate keypoint at the center to test whether
the point is a keypoint or not.

Keypoints found at lower scales are useful for non-
plain objects because there location are stable in these

(a) (b)

(c) (d)

Figure 2 (a) toy with cloth surface (b) mobile telephone (c)
ball pen (d) portable drive

Figure 3 keypoints found on the different images of a pen

objects. However, in aplain object, locations of key-
points at lower scales are quite unstable and usually
they are not placed on the interest regions found in a
plain object. As we are interested in extracting the
interest regions from the plain objects, we discard the
lower scale keypoints and retain only the higher scale
keypoints. To reduce the processing time, we extract
keypoints only at two different scales. As a result we
can extract interest regions at real-time. Interest re-
gions found on a soft toy at different scales are shown
Figure 4(a) and Figure 4(b).

However, the framework used in [3] to attribute
the orientation to the keypoints is not suitable in our
application. A plain object does not have corner like
points and the locations of keypoints resulting from a
plain object are not very stable. We need to assign ori-
entation to the keypoints such that the orientations are
invariant to slight changes in location. In [3] a keypoint
is assigned the orientation αm (see Figure 5)such that:

αm = argmax
α∈[0;2π]

|I(m) − I(m + dRα)|

If the location of the keypoint slightly changes (which
is very common in a plain object), the orientation also
changes. This is shown in Figure 5.

To compute a more stable orientation, eight lines
are drawn passing through a keypoint at angles from
0◦ to 360◦ degree at intervals of 45◦ degree (see Fig-
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ure 4(c)). Then we calculate the length of the portion
of a line lθi containing pixels of approximately the same
intensities. We take the orientation θ such that:

θ = argmax
θi∈[0;2π]

lθi

The length of the line lθ is also assigned to a key-
point as the region length. This helps to classify inter-
est regions correctly.

(a) (b)

(c)

Figure 4 (a) Interest points found at lower scales are not lo-
cated on the interest regions (b) Interest points found at higher
scales are usually located on the interest regions (c) Computation
of orientation and region length

Figure 5 orientation of a keypoint changes with the slight
change in location

4. Region Matching

After the feature points have been extracted from the
images, two main classes of approaches can be used to
achieve a matching.

In the first, computation of local descriptors invari-
ant to changes such as perspective and lighting [1,9] is

done.
A second class uses statistical learning based tech-

niques to model the set of possible appearances of a
patch. The approach used in [4] uses PCA and Gaus-
sian Mixture Models but does not account for perspec-
tive distortion. This has been considered in [3] using
Randomized Trees.

In [3] the set of possible patches around an image
feature under changing perspective and lightning con-
ditions has been considered as a class. This approach is
fast and effective to achieve a real-time performance. In
region matching, a true matching between all patches
is not required; it is enough to recognize some patches
successfully. A robust estimator such as RANSAC can
be used to detect the object.

We follow the statistical learning based technique
for region matching. However, in a plain object, num-
ber of interest regions is very small and variation within
these regions is small. Sometimes, number of correct
matchings found from a single classifier is not enough
to detect the object. To overcome this difficulty we ap-
ply a correlation based method in parallel to increase
the number of correct matches.

4.1 Local Region Matching using Naive Bayesian
Classifier

A class represents the set of all possible appearances of
an interest region surrounding a keypoint. Our aim is
to classify the interest regions found in a test image into
the most likely class. Let C = {c1, c2, ..., ck} be the set
of K possible classes and x = {x1, x2, ..., xd} is the set
of continuous features extracted from a patch. Given a
feature vector {x1, x2, ..., xd} our task to estimate the
most probable class such that

ĉi = argmax
ci

P (C = ci|x1, x2, ..., xd)

Using Bayes’ theorem, we write

P (C = ci|x1, .., xd) =
p (x1, .., xd|C = ci) P (C = ci)

p (x1, ..., xd)

If the prior P(C) is uniform, our problem is to find

ĉi = argmax
ci

p (x1, x2, ..., xd|C = ci) (1)

For a patch of size 20×20 the length of a feature
vector d is 400. Therefore, evaluation of joint prob-
ability in Eq.(1) is not feasible. Under the “naive”
conditional independence assumption, the conditional
distribution over the class variable C can be expressed
as:

p (x1, x2, .., xd|C = ci) =

d
∏

j=1

p (xi|C = ci)
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However, in the real world, the independence as-
sumption may not be true. In order to meet the inde-
pendence assumption, we do PCA before applying the
data to the Naive Bayes classifier. By decorrelating the
features, PCA makes them statistically independent.
PCA also reduces the dimension of the feature vectors
by removing the irrelevant features.

4.2 Local Region Matching Using Correlation

Correlation is a simple way to find the putative match-
ing between interest regions. This can be done done
by looking for regions that are maximally correlated
with each other within windows surrounding each key-
point. Only points that correlate most strongly with
each other are kept.

At first, from both the train and test images, im-
ages smoothed with an averaging filter are subtracted.
This compensates for brightness differences in each im-
age. Then a correlation matrix is constructed which
holds the correlation strength of every point relative to
every other point. Let p1 and p2 are the arrays of key-
points in the training and test image respectively. Max
operation is done along rows to get strongest match
in p2 for each p1 and along columns to get strongest
match in p1 for each p2. Final matches are those that
are consistent in both directions.

5. Training of Naive Bayes Classifier

In our application, the number of classes K is small. As
a result we can easily estimate the class prior p (C = ci)
by treating C as a multinomial random variable:

p (C = ci) = πc

where π is a vector containing class probabilities.
The Maximum Likelihood Estimation (MLE) is done
as:

πMLE
c =

Nc

N

where Nc is the number of training examples with
class label c and N is the total number of training exam-
ples. As there is no zero counts in any class, Dirichlet
prior is not required. To evaluate the class conditional
densities p (x1, x2, ..., xd|C = ci), we assume that the
parameters of each distribution is independent. More-
over, we assume that features are normally distributed.
Now due to Naive Bayes assumption, we evaluate the
class conditional densities as

p (x1, x2, .., xd|C = ci, θc) =

d
∏

j=1

N (xi|µjc, σjc)

K × d separate Gaussian parameters µjc, σjc have
been estimated from the training data. To generate the

feature vectors, we croped regions ranging from 10×10
to 20 × 20. Then we resized these patches to 10 × 10.
This results in a feature vector of length 100. Using
PCA feature vector dimension is reduced to 40. We
use a single image and generate many new views of
the object using affine deformations, and crop training
patches for each class.

6. Improving Correspondence

Recognition of a plain object in a cluttered scene is
highly challenging using region correspondence alone
as only very few interest regions are available in such
an object. As an example, we get around 5 interest re-
gions on the experimental object shown in Figure 4(a).
During recognition, many false matching occurs with
the interest regions found from the background. To
solve this problem, we propose a novel way to reduce
the candidate area of a test scene. We also use affine
solution to eliminate the outliers and to estimate the
object pose.

6.1 Segmentation

We use color information of the object of interest to
search on the scene for a putative match. However,
for a multicolor object, it is difficult to do so. If we
could represent a multicolor object using only a single
color it becomes easier. To find the base color of a
multicolor object we calculate the convex hulls of color
regions and select the color with largest area inside the
convex hull as the base color. We illustrate the process
in Figure 6. Here a glass shaped container of ‘ramen
snack’ is considered. There are two dominant colors in
this object: red and yellow. We extracted both colors
and computed the number of pixels in each color. In
the ‘Red’ area there are 6712 pixels and in the ‘Yellow’
area there are 6661 pixels; both colors cover almost
equal areas. Then, the convex hull is computed and
filled for ‘Red’ as shown in Figure 6(f)and for ‘Yellow’
as shown in Figure 6(i). In this case, as the ‘Red’ area
is larger, ‘Red’ is considered as the base color of the
object and will be used to describe it. We use a non-
plain object in this example to show the effectiveness
of our method. For a plain object it is much easier.

In Figure 7 we demonstrate the segmentation pro-
cess. Our task is to roughly locate the object of interest
and to eliminate the interest regions coming from the
background.

At first, we convert the test image from RGB color
space to L*a*b* color space. Then we classify the colors
in a*b* space using K-means clustering. After that we
label every pixel in the image using the results from K-
means. Using pixel labels, we separate the color regions
and retain that region which is the most similar to the
base color of the model object. Now the segmented
regions are filled by computing convex hull. Now we
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have to search only these areas for a putative match.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6 Base-part color detection (a) ramen snack (b) red
area (c) yellow area (d) point set of red area (e) convex hull (f)
area of red region (g) point set of yellow area (h) convex hull (i)
area of yellow region.

(a)

(b)

(c)

Figure 7 (a) A test scene with interest regions found both in
the target and the background (b) Segmentation by base color
to reduce the search area (c) Convex hull is filled to include the
different color regions within the object contour.

6.2 Outlier Elimination and Pose Estimation

Sometime the interest regions found on a plain object
are almost similar. As a result, false matching occurs
frequently. Usually, an interest point on the model ob-
ject may be matched with two or more regions on the
test object. Moreover as the number of interest regions
may be very few (e.g. 5), it is required to recognize
the object as few matches as possible. We like to per-
form recognition with as few as 3 feature matches. The
affine solution provides a satisfactory way to eliminate
false matching and to estimate the object pose. For
the examples of typical 3D objects used in this paper,
an affine solution works well within a limited 2D and
3D rotation. Using a similar approach in [1], we write

the affine transformation of a model point [x y]
T

to an

image point [u v]
T

as:

[

u

v

]

=

[

m1 m2

m3 m4

] [

x

y

]

+

[

tx
ty

]

(2)

where [tx ty]
T

is the model translation and the mi

parameters represent affine rotation, scale, and stretch.
To solve for the transformation parameters, we rewrite
Eq. (2) as:
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This equation is written for a single match, and we
need at least 3 matches to provide a solution. It can be
written as:

Ax = b

The least-squares solution for x can be determined
by solving:

x = [ATA]−1ATb

Outliers are eliminated by checking for agreement
between each interest regions of the test object and
the object model. If fewer than 3 points remain after
discarding outliers, then the match is rejected. After
outliers are removed, the least-squares solution is re-
solved with the remaining points and this process is
repeated. The final decision of acceptance of a model
hypothesis is found using the probabilistic model given
in [2].

7. Results

We compare our system with SIFT [1], which is one of
the state-of-the-art technique used for the recognition
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of a particular object. We show that SPOR yields much
better performance than SIFT on plain objects inspite
of its simplicity. Failure of SIFT is frequent on such
objects. At first we compare recognition performance
and then compare the processing times.

7.1 Comparison of Matching Performance

We compared the matching results of SIFT and SPOR
on the test scenes shown in Figure 8. The experimental
object was a soft toy with very few interest regions. The
toy was presented with translation, scale change, affine
transformation, and illumination changes. To produce
results using SIFT, we used the code provided by David
Lowe on his website, which computes the Laplacian at
several levels for each octave. We did not tune any pa-
rameters of SIFT and default values were used. On the
other hand, to test SPOR, we used the keypoint detec-
tor of [3] only at two scales. To compute the orientation
and interest region length of the keypoints we used the
method proposed in section 3. Although our method is
much simpler, it performs surprisingly well as we see in
the results. In Figure 8, first and second columns show
the matching results found by SPOR and SIFT respec-
tively. Matchings with occlusion, 2D rotation, change
in lighting and 3D rotation is shown in the first, sec-
ond, third and forth rows, respectively. SIFT fails in all
cases whereas SPOR fails only in 3D rotation. In fifth
row we tested both methods on another plain object.

7.2 Comparison of Speed

As comparison of speed between two algorithms de-
pends on the codes, we tried to be fair as much as
possible. To compare SPOR against SIFT we used
the hybrid codes written in C++ and MATLAB as the
SIFT code available to us is hybrid. The size of the in-
put images are 320 × 240 in both cases. In Table 1
comparison results have been shown. In MATLAB,
SPOR does not yield real-time performance. However,
in C++ we achieved real-time performance from SPOR.
In this comparison, we used a Intel Pentium 4, 2.8 GHz
, 512 MB RAM machine with Windows XP.

Table 1 Comparison of speed between SPOR and SIFT

Platform SIFT SPOR

C++ and MATLAB Feature extraction 3.55 sec 0.13

MATLAB Feature matching 4.48 sec 0.24 sec

MATLAB Training N/A 1.22 sec

8. Conclusions

We proposed a method named SPOR which is very ef-
fective for the recognition of a particular plain object

where many state-of-the art methods fail. The extrac-
tion of interest regions described in this paper is partic-
ularly useful in matching plain objects, which enables
the correct match between a test image and the model
image. This distinctiveness is achieved by assigning ori-
entation and region length to a local region of the im-
age. Computation of these interest regions is efficient,
yielding a real-time performance on standard PC hard-
ware. This representation is found effective in occlu-
sion, affine distortion, scale change, and change in illu-
mination. Usually the interest regions found in a plain
object are very plain, texture-free, and vulnerable to
false matching. We proposed a technique for represent-
ing a multicolor object using only a single color which is
useful to segment a plain object from the background.
This reduces false matching considerably. SPOR uses
two parallel methods for the classification of interest
regions. One is naive Bayesian classifier and the other
one is correlation based matching. Future research di-
rections include deriving invariant and distinctive im-
age features. The feature we used in this paper is only
the grayscale intensity. Further distinctiveness could be
achieved using illumination-invariant color descriptors.
Moreover, extensive testing is required using full 3D
viewpoint and illumination changes using rich dataset
of plain objects.
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(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 8 Comparison of recognition performance between SPOR and SIFT.
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