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Speci�c and Class Object Recognition for Service Robots

through Autonomous and Interactive Methods
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SUMMARY Service robots need to be able to recognize and
identify objects located within complex backgrounds. Since no
single method may work in every situation, several methods need
to be combined and robots have to select the appropriate one
automatically. In this paper we propose a scheme to classify
situations depending on the characteristics of the object of in-
terest and user demand. We classify situations into four groups
and employ di�erent techniques for each. We use Scale-invariant
feature transform (SIFT), Kernel Principal Components Analy-
sis (KPCA) in conjunction with Support Vector Machine (SVM)
using intensity, color, and Gabor features for �ve object cate-
gories. We show that the use of appropriate features is impor-
tant for the use of KPCA and SVM based techniques on di�erent
kinds of objects. Through experiments we show that by using our
categorization scheme a service robot can select an appropriate
feature and method, and considerably improve its recognition
performance. Yet, recognition is not perfect. Thus, we propose
to combine the autonomous method with an interactive method
that allows the robot to recognize the user request for a speci�c
object and class when the robot fails to recognize the object. We
also propose an interactive way to update the object model that
is used to recognize an object upon failure in conjunction with
the user's feedback.
key words: service robot, object recognition, SIFT, KPCA,

SVM, human-robot interaction

1. Introduction

Helper or service robots have attracted the attention of
researchers for their potential use with the handicapped
and elderly. We are developing a service robot that can
identify a speci�c object or a general class of objects
requested by the user. The robot receives instructions
through the user's speech and carries out two tasks:
1) detects a speci�c object, and 2) detects a class of
objects. For instance, if a user asks a robot to locate
a `coke can', his/her request is for a speci�c object. If
the user asks the robot to �nd a `can', his/her request
is for a class of objects. The robot needs to have a
vision system that can locate various objects in complex
backgrounds in order to carry out these two tasks.

There is no single object recognition method that
can work equally e�ectively on various types of objects
and backgrounds. Rather, the robot must rely on mul-
tiple methods and should be able to select the appropri-
ate one depending on the characteristics of the object.

SIFT [1], is capable of detecting an object that the
system had previously seen with an incomparable per-
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formance. Unfortunately, this method generates very
few or no keypoints if the object is plain and does not
have much detail. As a result, SIFT is not well suited
to recognize such objects. SIFT is also not appropriate
for recognizing object class.

In a recent work [2], Serre, Wolf and Poggio pro-
posed the standard model that is suitable for class
recognition. Although the results are impressive for
some object categories, there are some objects for which
the detection rate is not good enough.

In [3], Kernel PCA is used in conjunction with
SVM (KPCA+SVM) to learn the view subspaces for
multi-view face detection and recognition. In [4],
Gabor-based KPCA is used for face recognition. These
methods can be applied to class recognition. When
KPCA and SVM are used for object recognition, fea-
ture selection is crucial. Feature selection is important
in order to achieve a good recognition performance on
particular classes of objects. It is also possible to con-
struct a feature vector using multiple features, but in
this case processing time for an input image is long and
requires a large number of training images. Our policy
in this research is to use only e�ective features to real-
ize e�cient and reliable object recognition method. In
this paper we report on our study of intensity, color,
and Gabor features and propose a way of selecting a
feature depending on the characteristics of the object.

To develop an integrated object recognition plat-
form for service robots, we split the object recognition
problem into several cases depending on the task and
object category. In this paper we present scenarios
that have been encountered by a service robot to carry
out an object recognition task and propose solutions
to these challenges. There are some cases when object
recognition fails. In these cases the robot communicates
with a human user and the user guides it to recognize
the object through short, `user-friendly' conversation.
In our application, the user is conceived of as a physi-
cally handicapped person who can speak clearly. Thus
it should not be di�cult for this person to interact with
the robot to help it to locate the requested object. The
service robot learns through failure and continuously
improves its model of an object whenever it makes a
mistake. The user helps it in this learning process.

Our proposed categorization scheme enables the
robot to choose an appropriate detection method.
Through experiments we show that a technique se-
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lected by the categorization scheme performs better
than other techniques. We introduce the categoriza-
tion scheme in section 2. In section 3 we discuss the
recognition framework and feature extraction. Exper-
imental results are shown in section 4 and interactive
object recognition is discussed in section 5. Finally we
draw conclusions of our work in section 6.

2. Object Categorization

Most of the objects encountered by service robots can
be described by their color, shape, and texture. By
`texture' we mean the pattern (not necessarily regular
and periodic) within the object contour. For example,
in our notation, the label on a bottle is its texture. We
used three features for recognition: intensity, Gabor
feature, and color. We split the objects into �ve cate-
gories using the object characteristics described below.
Examples of each category are provided in section 4.
Category 1 (plain, simple shape objects): These
objects are plain, do not contain texture, and their col-
ors are di�erent. They have similar shapes and this
shape information is a clue to detect them. Class recog-
nition or speci�c object recognition of this category is
not possible using SIFT. KPCA+SVM can be used al-
though it uses the same strategy for both class and
speci�c object detection.
Category 2 (di�erently textured objects): In this
category, some objects have textures although these
textures do not characterize them and the texture con-
tents of di�erent members of the class are not the
same. Some members of those classes have a texture-
free body. As a result we need to use information re-
garding their shapes in order to describe them. Using
SIFT, any speci�c textured object of this category can
be recognized. To recognize a texture-free speci�c ob-
ject or a class of this category we use KPCA+SVM.
Since these objects are shape-based, we should use Ga-
bor feature because it works well on objects with dif-
ferent textures.
Categories 3-1 and 3-2 (similarly textured ob-
jects): These objects have similar texture and tex-
ture is required for their recognition. An example of
this class includes fruit (e.g. pineapple) and computer
keyboard. KPCA+SVM based method works on this
type of object. However, in our experiments, we found
that intensity feature works better than or the same
as Gabor feature for some objects of this type. For
other objects of this type, Gabor feature obtains a bet-
ter recognition rate. Many of the texture classi�cation
methods [12], [13], [14] use Gabor �lters for feature ex-
traction. Robust feature extraction using Gabor �lters
requires a large set of Gabor �lters of various scales and
orientation. This makes the computation huge. In this
respect, intensity feature is desirable due to its simplic-
ity and speed. Objects with similar textures in which
grayscale or intensity feature has satisfactory perfor-

mance are named category 3-1 objects. Gabor feature
works better on other types of objects with similar tex-
ture. These are designated category 3-2 objects. Char-
acteristics of category 3-1 and 3-2 objects and how to
separate them is discussed in section 2.1.
Category 4 (similar color objects): These objects
have similar color histograms. We use a combination
of color and intensity features for their recognition. An
example of this category is fruit, such as orange and
banana.

2.1 Classi�cation of Situations

In Table 1, we summarize the object categorization as
discussed in the previous section. The object recogni-
tion problem has been classi�ed into several cases based
on task and object category.

Table 1 Categorization of an Object Recognition Scenario.

Applicability
Object Speci�c Case KPCA+SVM
category or class SIFT intensity Gabor color +

intensity

1
Speci�c 1 •
class

2
Speci�c 2 •
(textured)
Speci�c 3 •
(texture-
free)
class 4 •

3-1
Speci�c 5 •
class 6 •

3-2
Speci�c 7 •
class 8 •

4
Speci�c 9 •
class

To categorize the scenarios into one of the nine
cases, we need two kinds of information: object cat-
egory and object speci�city. We apply the algorithm
shown in Figure 1 to classify an object class into cat-
egory 1, category 2, category 3-1, category 3-2 or cat-
egory 4. The robot is programmed on all the objects
(on which the robot works) using the algorithm prior
to recognition. Finally, object speci�city will be known
from the robot user. Now we deploy appropriate strate-
gies for four groups of cases as follows:

Method 1 (SIFT based): cases 2, 5 and 7
Method 2 (Gabor based KPCA+SVM): cases 1, 3, 4
and 8
Method 3 (Intensity based KPCA+SVM): case 6
Method 4 (Color and intensity based KPCA+SVM):
case 9

To categorize a particular object class into one of
the �ve categories using the given algorithm, images of
di�erent objects of the same class are required. The ob-
jects should appear in plain background. This ensures



MANSUR and KUNO:

3

that no keypoint or feature is generated from the back-
ground. Note that this is not a recognition step and is
done o�ine. As a result we can use images of objects
with a plain background. At the �rst stage of the al-
gorithm we classify the objects into two types using a
threshold of SIFT keypoint count. To �nd the threshold
we collect a su�cient number of images of plain objects.
Then we extract SIFT keypoints from each of these im-
ages and take a record of these keypoint counts (label
1). We also count the SIFT keypoints for non-plain
objects (label 2). Then we estimate the parameters of
Gaussian mixture model for given labeled data sam-
ples, and �nally we construct the decision boundary of
a Bayesian classi�er. This classi�er has the quadratic
discriminant function:

f(x) = 〈x ·Ax〉+ 〈B · x〉+ c

whereA,B and c are the parameters of quadratic term,
linear term and bias of the model respectively. The
classi�cation strategy is

q(x) =

{
plain f(x) ≥ 0
nonplain f(x) < 0

The number of SIFT keypoints may depend on
some parameters. To investigate the in�uence and bias
of di�erent SIFT parameters on decision procedure, we
conducted experiments on one plain object (apple) and
one textured object (pineapple). We changed the fol-
lowing SIFT parameters: contrast threshold, principle
curvature ratio threshold, number of octaves, and num-
ber of scales per octave. The ranges over which these
parameters were varied are as follows:

Contrast threshold: 0.01 to 0.05
Principle curvature ratio threshold: 5 to 13
Number of octaves: 1 to 5
Number of scales per octave: 1 to 5

The image size of both objects are kept same when
the parameters are varied. When the contrast thresh-
old was greater than 0.03, it is found that the number
of keypoints in both objects are almost similar. How-
ever, for the other three parameters, large di�erences
between the numbers of keypoints on two objects are
found for all settings. The di�erences are also observed
when the contrast threshold is smaller than 0.03.

Based on this preliminary experiment, we have
adopted the following values for the for the four pa-
rameters:

Contrast threshold: 0.02
Principle curvature ratio threshold: 10
Number of octaves: 4
Number of scales per octave: 3

We use these parameters in all experiments de-
scribed later.

Figure 1 Object categorization algorithm.

When all the objects of a class are plain and have
non-similar color histograms, they are marked as cate-
gory 1 objects. On the other hand, plain objects with
similar color histograms are marked as category 4 ob-
jects. Similarity in color histograms is checked by Eu-
clidean distance between HSV color histograms.

If the objects have texture, they produce a large
number of SIFT keypoints, and we need further investi-
gation to categorize them. If the HSV color histograms
are similar, they will be marked as category 4. Non-
plain objects with dissimilar color histograms are fur-
ther divided into two categories according to the simi-
larity of their texture contents.

To check the similarity in texture we compute the
local binary pattern (LBP) histograms [15] and calcu-
late the log likelihood statistic [15]. Object with dis-
similar textures, variance of the log likelihood statistic
is higher. To get the threshold, a Bayesian classi�er
is trained using well known Brodatz [11] texture. This
database consists of 116 di�erent texture classes. Each
of the 512×512 images is divided into 36 overlapping
subimages of size 120×120. Log likelihood statistic of
LBP histograms are computed from each pair of subim-
ages. These pairs contain both similar and dissimilar
textures. The threshold is learnt using the variances of
the log likelihood statistics of all pairs.

Objects with similar textures are further subdi-
vided into two categories depending on their uniformity
measure, U which is given by:

U =
L−1∑
i=0

p2(zi)

Where, L is the number of intensity levels and p(zi)
is the probability that intensity level of a pixel is equal
to zi). This measure is maximum when all gray levels
are equal (maximally uniform) and decrease from there.
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On the Brodatz subimages, we apply both Gabor-based
and intensity-based KPCA + SVM for texture recogni-
tion. We labeled the textures on which intensity feature
does better than or the same as the Gabor feature as
category 3-1 and the remaining textures as category
3-2. Then we built a Bayesian classi�er using the uni-
formity as the feature. This gave us a classi�er that can
provide information about the robustness of intensity or
Gabor feature on a particular texture type. Uniformity
of category 3-2 objects are usually larger than those of
category 3-1 objects.

We would like to summarize the basic points in
our categorization and recognition methods. Our ob-
ject recognition is based on appearance. We consider
color, texture, and shape as descriptors of appearance.
SIFT-based method shows a good performance for spe-
ci�c object recognition. Therefore, our categorization
method �rst checks if SIFT can be used. Then, it exam-
ines if color and texture can be useful. If they are useful,
appropriate feature is chosen for the object class. How-
ever, note that all recognition methods except SIFT-
based one are based on KPCA and SVM. These meth-
ods implicitly use shape information. Shape changes
among objects in the same class and/or those caused
by viewpoints are dealt in the KPCA and SVM frame-
work although the capability cannot be su�cient. This
problem is left for future work.

2.2 Categorization Example

When the categorization algorithm is applied to `cup'
(Figure 2) it has been found that some of the sample
images of this object have very few keypoints, while
the others have a large number of keypoints. As a re-
sult, the discriminant function (based on SIFT keypoint
count) returns positive as well as negative values. The
color and orientation histograms of di�erent `cup' im-
ages are not similar. Consequently `cup' has been clas-
si�ed as a category 2 object. The application of the
categorization algorithm to `keyboard' resulted in the
�nding that it is not a category 1 object and their color
histograms are not similar. However, textures of di�er-
ent `keyboard' examples (Figure 3) are similar (variance
of log likelihood statistic of LBP histograms is low) and
its uniformity is also high. As a result, this object has
been categorized as category 3-2.

3. Recognition Framework

3.1 Method 1

We follow [1] in this method. First, the original image
is progressively �ltered using Di�erence of Gaussian �l-
ters with σ in a band from 1 to 2 resulting in a series
of Gaussian blurred images. This processing produces
a scale space representation. Then these images are

(a) (b)

Figure 2 (a) A textured cup has 67 SIFT keypoints (b) A plain
cup has 17 SIFT keypoints.

Figure 3 Examples of `keyboard'.

subtracted from their direct neighbors (by σ) to pro-
duce a new series of images. Each pixel in the image is
compared to its eight neighbors and the nine pixels in
each of the other pictures in the series. Keypoints are
then chosen from the extrema in scale space. To derive
the SIFT keypoint descriptors for each keypoint, his-
tograms of gradient directions are computed in a 16×16
window using bilinear interpolation.

Sometimes di�erent objects have a common brand
name or logos. In this case, SIFT produces an incorrect
matching (see Figure 4). To solve this problem we omit
those keypoints that are common in di�erent objects.

Figure 4 Incorrect matching due to common logo.

3.2 Method 2

We apply a battery of Gabor �lters to each of the train-
ing and test images (grayscale) to extract the edges
oriented in di�erent directions. These �lters come
in four orientations with eight scales in each orienta-
tion. Let (p1, p2, ..., pm) be the positive images and
(n1, n2, ..., nm) be the negative images provided for
training. These images are resized to 120×120 pixels.
4×8 Gabor �lters are applied to each of the positive and
negative training images. We take max over the scales
to provide scale invariance. Now we have four Gabor



MANSUR and KUNO:

5

response maps. Each map contains edges in a particu-
lar direction determined by the orientation of the Ga-
bor �lter. These maps are normalized and augmented
into a single column vector. We obtain KPCA-based [5]
feature vectors by computing principal component pro-
jections of each orientation map of the training sample
onto the nonlinear subspaces of positive and negative
samples. These features are used to train a SVM clas-
si�er.

3.3 Method 3

All the test and training images are converted to
grayscale and resized to 120×120 pixels. These resized
images are then normalized to compensate for the e�ect
of varying illumination. Finally they are converted into
column vectors and KPCA features are derived. Then
a support vector classi�er is trained using the intensity
values of the pixels to build the classi�er.

3.4 Method 4

At �rst all the test and training images are resized and
normalized. Then a 48-bin HSV histogram is computed
from each image. Each H, S and V channel is repre-
sented by a 16-bin histogram and combined. Then a
histogram normalization is done. We train an SVM
classi�er with these feature vectors. Another intensity-
based SVM classi�er is trained (as in method 3) and
used to reduce the false positive results. In a test scene,
the �rst classi�er gives positive results when it �nds
similar colors in the background. Those regions of the
test scene are further checked by the second classi�er
(intensity based). The regions where both classi�ers
agree are marked as detected objects.

4. Experimental Results

We carried out experiments in order to (1) evaluate the
e�ectiveness of our categorization algorithm, (2) verify
the hypothesis of categorization and prove the e�ective-
ness of feature selection, and (3) evaluate the object-
recognition performance in our application domain.

4.1 Evaluation of Categorization Algorithm

To validate the automatic object categorization algo-
rithm we perform experiments on nine object classes.
For each class, we use ten di�erent objects. These ob-
jects are taken from Caltech and our own dataset (de-
scribed in section 4.2) and each image is manually seg-
mented from the background. To implement the cat-
egorization algorithm, at �rst SIFT keypoints are ex-
tracted from 100 images ( 10 images for each class).
Results of these experiments are shown in Table 2. The
forth column, LBP, is the pairwise log likelihood statis-
tics of the LBP histograms.

For `apple', `red apple' and `orange', number
of SIFT keypoints are very small and the condition
`f(x) ≥ 0' (see Figure 1) is satis�ed for all images of
these three objects. The average pairwise distance be-
tween color histograms is large for `apple' (due to sev-
eral colors) and small for `red apple' and `orange'. Con-
sequently, `apple' is categorized into category 1 whereas
`red apple' and `orange' are categorized into category
4. Although large numbers of keypoints are found on
`litchi' and `sun�ower', average pairwise distances be-
tween color histograms are found small. These two ob-
jects also have been categorized into category 4.

For the remaining �ve objects, we compute the
LBP histograms and calculate the log likelihood statis-
tic to check the similarity in texture. For `cup' and
`cup noodles', variance of the log likelihood statistic
is higher. This means that they do not have similar
textures and consequently these two objects have been
classi�ed into category 2.

To determine the category of leopard, pineapple
and keyboard we �nally compute the average unifor-
mity for these three objects. As the average uniformity
for leopard is lower, it means that its gray levels are
far from equal and this object is classi�ed into category
3-1. On the other hand, pineapple and keyboards are
classi�ed into category 3-2.

4.2 Use of Appropriate Feature

This section presents recognition performance of the
proposed methods obtained on two multi-class object
datasets. The �rst one is a subset of the widely used
Caltech dataset (available at www.vision.caltech.edu).
Some of the images of this subset are shown in Figure 5.
We have taken images of twelve di�erent classes from
this dataset. As we are interested in the recognition of
household and daily life objects those are encountered
by a service robot, we consider a limited object classes
from Caltech dataset. Although `leopard' is not a such
type of object, we chose it to increase the number of
category 3-1 objects. The negative training and test
sets are collected from the internet images those are
totally unrelated to the keyword category. The second
dataset, which we collected from the images of fruits
and home objects taken at our households and also
from internet, consists of eight object classes: orange,
cup noodles, co�ee jar, pineapple, litchi, keyboard, can,
and apple. Figure 6 shows some of the sample images
of this dataset. The number of images per class is not
more than forty and we randomly split each object class
into two sets: training set and testing set. The �rst set
is used for training and the second one for testing. Neg-
ative images for this dataset were taken from random
background images from home and laboratory environ-
ment. The numbers of images for training and testing
of each object class are shown in the last two columns
of Table 3. In these columns, the left numbers indicate
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the numbers of positive images and the right numbers
those of negative images respectively.

From the results shown in Figure 7, we can con-
clude that for category 2 objects (1) when intensity
feature is used, detection rate is poor if the number of
the KPCA components is kept below 30. It rises with
an increase in the number of components. However, a
false-positive rate also increases simultaneously. There-
fore, intensity feature is not suitable for the detection
of `car'. (2) When the Gabor feature is used, both de-
tection rate and false positive rate are excellent. The
detection rate is almost �at, and a false-positive rate
degrades if we increase the number of KPCA compo-
nents beyond 30. The use of a small number of KPCA
components is desirable because it minimizes training
and recognition time.

(a) (b)

(c) (d)

Figure 5 Some test images from Caltech database: (a) car (b)
scissors (c) leopard (d) umbrella.

(a) (b)

(c) (d)

Figure 6 Some test images from our own database: (a) litchi
(b) orange (c) pineapple (d) cup noodles.

Figure 7 Recognition performance on `car' object.

Figure 8 Recognition performance on `leopard' object.

From the same series of experiments (Figure 8) for
category 3-1 object (`leopard') we notice that: (1) Use
of intensity feature results in �at and very high (99%)
recognition rate. It also results in a low false-positive
rate when the number of KPCA components is kept
below 40. Therefore we can safely use a small number
of KPCA features. (2) When Gabor feature is used,
the detection rate lies above 80% but the false-positive
rate becomes high. Moreover, the false-positive rate be-
comes worse with an increase in the number of KPCA
features. In Table 3, class recognition performances of
three methods are compared. From the table it is clear
that (i) category 1, category 2 and category 3-2 objects
are best recognized by method 2, (ii) category 3-1 ob-
jects are best recognized by method 3, and (iii) category
4 objects are best recognized by method 4. The object
category shown in the second column is determined by
the categorization algorithm shown in Figure 1. For
categorization, we use ten representative objects from a
class and segment them manually from the background.
We follow the same procedure explained in section 4.1.

For all objects except category 4, color histograms
are not similar within the same object class. Cropped
`leopard', produces similar histograms. However, in the
Caltech dataset `leopard' images contain much of the
background. For this reason, we applied method 4 only
for category 4 objects. Images of oranges are used as
negative examples in the experiment with `apple' to
make the recognition challenging. For dimensionality
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Table 2 Object Categorization Using the Categorization Algorithm.

object no. of SIFT keypoints avg. pairwise dis-
tance between color
histograms

LBP uniformity derived cat-
egory

min max avg. min max variance
apple 11 46 29 407 - - - - 1
red apple 14 23 18 116 - - - - 4
orange 3 12 7 127 - - - - 4
litchi 74 409 202 157 - - - - 4
sun�ower 85 146 108 152 - - - - 4
cup 13 518 172 379 2.4 5.6 0.0012 - 2
cup noodles 75 166 124 423 2.83 4.75 1.2070e-004 - 2
leopard 464 770 640 352 2.64 2.73 1.5458e-010 0.00554 3-1
pineapple 297 564 450 305 4.5 4.7 1.5469e-009 0.00705 3-2
keyboard 752 934 827 348 3.57 3.7 2.7559e-009 0.00919 3-2

Table 3 Class Recognition Performance.

Object Category Method 3 (intensity based) Method 2 (Gabor based) Method 4 (color+intensity) No. of
training
images

No. of
test im-
ages

Detection
Rate

False-Positive
Rate

Detection
Rate

False-Positive
Rate

Detection
Rate

False-Positive
Rate

car 2 0.41 0.06 0.91 0.1 - - 50+50 50+50
leopard 3-1 0.99 0.06 0.91 0.4 - - 50+50 50+50
umbrella 2 0.7 0.3 0.86 0.21 - - 37+50 37+50
scissors 2 0.83 0.51 0.79 0.3 - - 25+50 25+50
pizza 2 0.7 0.59 0.93 0.4 - - 25+50 25+50
keyboard 3-2 0.73 0.52 0.79 0.15 - - 22+30 22+30
can 2 0.77 0.34 0.71 0.14 - - 30+30 30+30
red apple 4 0.53 0 0.80 0.7 0.87 0.2 40+40 40+40
apple 1 0.49 0.03 0.81 0.2 - - 20+30 20+30
cup 2 0.44 0.33 0.72 0.05 - - 20+30 18+30
cup noodles 2 0.33 0.06 0.6 0 - - 20+30 15+30
pineapple 3-2 0.75 0.31 1.0 0.12 - - 20+30 16+30
watch 2 0.68 0.02 0.86 0.06 - - 50+50 50+50
stapler 2 0.83 0.04 0.97 0.05 - - 22+30 22+30
camera 2 0.64 0.08 0.86 0.24 - - 25+30 25+30
co�ee jar 2 0.89 0.41 0.90 0.05 - - 20+80 20+80
dollar bill 3-1 0.97 0.01 0.88 0.05 - - 17+40 17+40
soccer ball 2 0.65 0.14 0.99 0 - - 20+30 20+30
orange 4 0.2 0.03 0.7 0.04 1.0 0 10+30 10+30
litchi 4 0.17 0.03 0.41 0.1 0.76 0.1 10+30 17+30
sun�ower 4 0.82 0.03 0.65 0.01 1 0.1 11+30 20+30

reduction of intensity and Gabor feature vectors we re-
tained 15 to 20 KPCA components in all experiments.

Finally in Table 4, we compare method 2 with
Serre's work [2]. These four objects (all from category
2) are included in the ten worst case categories in [2].
In Serre's method 800 features were used and the train-
ing and recognition times are 1200 sec/25 images and
6 sec/image respectively. In method 2 we used only 20
features and the training and recognition times are 20
sec/25 images and 0.1 sec/image respectively. As to
recognition rate, our method is comparable to Serre's
method.

4.3 Object Recognition for Service Robot

We also experimented with daily objects placed in home
scenes. These results are shown in Figure 9. In the �rst
scene two bounding boxes detected a scissors. Part of

the scissors is contained in both of them. Since there
is some overlapping areas between these two boxes, the
location of the scissors is assumed to be on the overlap.
Gabor feature based KPCA+SVM is used since `scis-
sors' is a category 2 object and the user request was to
�nd any available scissors (class). In Figure 9(b) the
user made a request to �nd any `cup noodle' without
mentioning a particular choice. Since `cup noodle' is
a category 2 object, the robot used the Gabor feature
based KPCA+SVM. Here the robot detected three `cup
noodles'. One of them is false positive and the other
two are true positives. In Figure 9(c), an attempt to
detect an apple produced three bounding boxes. Since
all of them are overlapping, the robot can estimate the
position of the apple. Here intensity and color-based
KPCA+SVM was used since an apple is a category 4
object. In another session, the user instructed the robot
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to �nd a speci�c mug and a `seafood cup noodle'. The
robot detected these objects using SIFT since both of
these are category 2 objects. Figures 9(d) and (e) illus-
trate the results. For cup noodle, scissors, and apple,
the number of training images of each class was 40.

(a) (b)

(c) (d)

(e)

Figure 9 (a)-(c) Class recognition results: (a) scissors (b) cup
noodles (c) apple (d)-(e) Speci�c object recognition results: (d)
cup (e) cup noodle.

Table 4 Comparison With [2].

Object Serre's method Method 2
Detection
rate

False-positive
rate

Detection
rate

False-positive
rate

Watch 0.85 0.13 0.88 0.12
Ewer 0.79 0.20 0.81 0.22
Lamp 0.80 0.18 0.77 0.28
Chair 0.57 0.25 0.68 0.24

5. Incorporating User Interaction

5.1 Interactive Object Recognition

We are implementing our algorithms on our experimen-
tal robot Robovie-R Ver.2 (Figure 10) [6]. This 57 kg
robot is equipped with three cameras (2 pan-tilt and
one omnidirectional), wireless LAN, various sensors,
and two 2.8 GHz Pentium 4 processors.

Our service robot has access to a few variants of
a certain class of objects and its training set is usu-
ally small. In spite of a small training set we achieved

Figure 10 Robovie: our experimental robot.

a reasonable recognition rate. However, the recogni-
tion methods are not 100% accurate. It is desirable to
improve the robot vision in any feasible way. In our
application the robot user is assumed to be a phys-
ically disabled person with speaking capability. The
robot is designed to help him or her bring an object
upon request. When the robot fails to �nd the object
it may ask the user to assist it to �nd the object us-
ing some short, `user-friendly' conversation. We have
already developed some interactive object-recognition
methods [7�9]. In these works, we handled only sin-
gle color objects in single color backgrounds where the
users mention objects by their colors and shapes, not
by the object names. However, in this paper, we con-
sider real world objects in complex backgrounds where
the user can mention an object by its name in a natural
way.

In order to implement interactive object recogni-
tion, robots have to understand the user's instruction.
We have developed the following method at present. In-
structions are grouped into eight categories. In order to
build a sentence pattern, words or phrases must be se-
lected from the vocabulary list. Some words are marked
as optional. We limit the vocabulary list to eliminate
ambiguity during speech recognition. The user must
follow the sentence structure (Table 5) and choose the
words from the registered word list (Table 6) for the
corresponding vocabulary type to successfully initiate
the command. Optional words, though not required,
provide more natural speech. For example, the user can
say, �Get me a noodles.� This satis�es the grammar of
`Object ordering: class' and it uses the vocabulary from
Phrase 1 and Object Name. Likewise, the user could
also say, �May I have the Nescafe (brand name) Co�ee
jar?� Words not appearing in the vocabulary list may
not be used. The vocabulary list are shown in Table
5. Language processing presented here is not the state
of the art. We developed it for checking the e�ective-
ness of the interactive object-recognition technique. At
present, user instruction is given through a keyboard
and the robot response is generated by text to speech.
We will use the results developed by researchers on nat-
ural language understanding in the future.

Results of autonomous object recognition can be
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Table 5 Grammar.

Purpose Sentence structure Example
Feedback Feedback Yes/No
Object Ordering: class Phrase 1+a/an+ Object Name Get an apple.
Object Ordering: speci�c Phrase 1 + (the) + (Speci�er) +Object Name (at least one `the' or

`speci�er' is required
Get my cup.

Positional information 1 Verb 1 + Adjective/ Preposition 1 + (Article) + Speci�er + Object
Name

Look at the left of Seafood
noodle.

Positional information 2 Verb 1 + Adjective/ Preposition 1 + that + (Object Name) Look behind that.
Positional information 3 Verb 1 + Preposition 2 + (Article) + (Speci�er) + Object Name

+ (and) + (Article) + (Speci�er) + Object Name
Look between Pepsi can
and tea bottle.

Instruction to point (Phrase 2) + Verb 2 Please show me.
Instruction to �nd (Phrase 3) + Verb 3 + (Article) + Speci�er + Object Name Can you �nd the wooron

tea bottle?

classi�ed as shown in Figure 11. Shaded nodes repre-
sent the cases which are not handled in this paper.

Figure 11 Outcomes of autonomous object recognition.

Case 1. One instance of the required object is
found

Table 6 Vocabulary.

Type Registered words
Feedback Yes, No
Phrase 1 May I have, Can I have, Can I get, (Please)

get (me), (Please) Bring, I'd like, I would
like, Give (me)

Phrase 2 Please, Could you (please), Can you (please)
Phrase 3 Could you, Can you
Verb 1 (Please) look (at/to), (Please) check
Verb 2 Show (me), Point
Verb 3 Find, See
Speci�er Green, Red, My, Coke, [brand name], etc.
Adjective Left, Right
Preposition 1 Front, Behind, Top, Bottom
Preposition 2 Between
Object Name Noodles, Cup, Jar, Bottle, Co�ee jar, etc.

Here interaction is not required since the robot suc-
cessfully recognizes the desired object. If the result is
wrong, this turns into case 4.

Case 2. More than one object are found (See
Figure 12)

Here the user wants `a co�ee jar'. The robot uses Ga-
bor feature based KPCA+SVM and �nds two objects,
one of which is a creamer jar. The robot con�rms the
false positive result through user interaction and then
rejects the object found in the lower bounding box, and
only the correct object remains. The robot updates its
model of `co�ee jar' by including the image of false pos-
itive in the negative training set. If the robot makes the
same mistake again, it again adds one more instance of
that object. This gives more weight to that particu-
lar image. If none of the found object is true positive,
situation turns into case 4.

(a) (b)

Figure 12 (a) Two objects have been found where the lower
one is false positive (creamer) (b) False positive is removed
through user interaction.

Case 3. No object found due to occlusion (See
Figure 13)

Here the user wants the sugar jar and there is only one
sugar jar in the house and the order is speci�c. The
sugar jar is plain and only one example is available. As
a result, the robot uses the color histogram for recog-
nition. Since the object is in back of the wooron tea
bottle, the robot could not �nd it and informs the user.
The user helps the robot get it and uses some reference
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objects that are easy to �nd. In front of the robot there
are two such objects: a wooron tea bottle and Brite
co�ee creamer. Both of these have good texture and
many SIFT keypoints. The robot uses SIFT to locate
them �rst and then follows the directions with respect
to these reference objects to get the required sugar jar.
When the user says `creamer' and `tea bottle', the robot
understands `Brite creamer jar' and `wooron tea bottle'
respectively since there is only one of each object type
and those objects were mentioned before by the user in
the same conversation.

Case 4. No object found although there is no
occlusion

In this case, the robot cannot �nd the object even
though the object is in the robot's �eld of view. The
robot needs to obtain some information from the user
to recognize the object. This case is not handled in this
paper. We are now working on this problem. We have
presented preliminary results in [10].

(a) (b)

(c)

Figure 13 (a) The required object is not found due to occlu-
sion (b) Two objects have been found after the robot moved to
the left. The left object is false positive (c) False positive is
removed through user interaction.

5.2 Learning through Failure

In interactive object recognition, we have to consider
that the interaction took place earlier for a particular
object should not be repeated by the robot. Therefore,
the robot should learn from failures. We have devel-
oped a simple method of interactive learning. Figure 14
shows the �ow. When the system cannot detect a re-
quested object, the system uses interaction with the
user to detect it. After successful detection, the system
updates the model of the object by adding the image

Figure 14 Interactive learning.

(a) (b)

Figure 15 (a) Detected object along with false positive (b) No
result of false positive after inclusion of the previous false positive
image in the negative training set.

of the detected object. In our experiments, we noticed
that the inclusion of even a single representative image
in the training set can improve the recognition results
signi�cantly. In Figure 15 we demonstrate the e�ective-
ness of the object model update on failure through user
interaction. Here, the user requests the robot to get a
co�ee jar. However, the robot detected two objects, one
of which was false positive (Figure 15(a)). The robot
knew the correct one and wrong one through interac-
tion with the user. The robot included the false positive
image in the negative training set and ran the learning
program again, thus updating the object model. Now
the robot can detect the object without any false posi-
tive as shown in Figure 15(b). In this experiment, the
number of training images is 30 for positive set and 80
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for negative set.
The size of the training sets are usually small as

the number of objects is limited in a house. As the
robot fails more and more, the negative training set
grows gradually and the in�uence of a single image on
a large training set may have a negligible e�ect. Actu-
ally, di�erent classi�ers handle this issue in a di�erent
manner. We need further study on `learning through
failure' by di�erent classi�ers. At present we are inves-
tigating AdaBoost to tailor it for this purpose and to
handle small positive and large negative training set.

6. Conclusions

To make a service robot's vision system work well in
various situations, we have integrated several methods
so that the robot can use the appropriate one. We
have proposed a scheme to classify situations depend-
ing on the characteristics of the object of interest and
the user's demand. It has been shown that it is pos-
sible to categorize the objects into �ve categories and
to employ suitable techniques for each category. Our
categorization scheme enables a service robot to auto-
matically select the appropriate feature and detection
method to use. SIFT and KPCA in conjunction with
SVM have been employed for di�erent categories of ob-
jects. The categorization scheme has been applied to
select color, intensity, or Gabor feature to use in the
KPCA based technique to achieve better recognition re-
sults. Our experimental results con�rm the advantage
of categorization. We have also proposed an interac-
tive object-recognition system to recover from failure.
This also makes the robot learn and update the object
model from failure and improve the recognition perfor-
mance continuously. Further study on interactive ob-
ject recognition and learning from failures are left for
future work.
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