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Abstract— In this paper, we propose a method of action
recognition using dynamics features based on physics model.
The dynamics features are composed of torques from knee and
hip joints of both legs and implicitly include the gravity, ground
reaction forces, and the pose of the remaining body parts.
These features are more discriminative than the kinematics
features, and they result in a low dimensional representation
of a human action which preserves much information of the
original high dimensional pose. This low dimensional feature
allows us to achieve a good classification performance even
with a relatively small training data in a simple classification
framework such as HMM. The effectiveness of the proposed
method is demonstrated through experiments on the CMU
motion capture dataset with various actions.

I. INTRODUCTION

The recognition and interpretation of human actions and

activities has gained considerable interest in the robotics and

AI communities [1], [2] because there exist a large number

of potential applications, e.g., human computer interaction,

robot learning and control, and the imitation learning. For

example, in the imitation learning task, a teacher may want

to show a robot how to serve food. This activity includes

several action components: walk to the location of food, hold

it, and return to the point by walking. It would be easier for

the robot to learn the task if the robot is able to recognize

the key action components rather than to imitate the whole

task.

Depending on the way of feature extraction, approaches

used for human action recognition are roughly classified into

two types: sensor-based approach (e.g., motion capture data),

and vision-based approach.

In the vision-based approaches, feature commonly used

for action recognition include shape [3], [4], optical flow

[5], [6], point trajectory [7], [8], and joint angle [9]. Most of

these features encode the kinematics of the human motion,

and in general they are high dimensional.

Recognizing human actions from a video is a challenging

task [14]. Firstly, it is difficult to identify an action inde-

pendent of viewing direction. Secondly, there is difficulty of

extracting stable features due to noise, or model fitting errors.

In the sensor based approaches, sensors are usually placed

in the environment or attached to the human body to capture

the human motion. Yang et al. [29], proposed an action

recognition system using wearable motion sensor networks.

Also, there are several works which use acceleration data for
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action recognition [30]. In several works [35], [36], action

recognition is done using the joint angles or point trajectories

obtained from the human motion capture data.

In general, for many actions, kinematics features are high

dimensional and have small interclass variation. Moreover,

they do not consider the interaction of environment on human

motion. On the other hand, recently, physics-based models

have been used successfully for 3D people tracking [10],

[11]. The physics-based models provide parameterizations

for effective modeling of plausible poses and motions. In

addition, they are capable to capture the influence of gravity,

ground contact, and other physical interactions with the

environment on pose and motion. In a related work [12],

internal joint torques and external forces were recovered from

observed motions in an inverse problem setting.

Inspired by these works, we attempt to use dynamics

features obtained from physics model for human action

recognition. Use of dynamics allows us to represent an action

by the torques and forces governing the human motion.

We believe, these kind of feature will result in a more

discriminative feature.

Our main contribution in this paper is that we represent

actions using dynamics features, namely joint torques. Use

of such a feature has several advantages over kinematics

features. Firstly, these features are more discriminative than

the kinematics features. Secondly, they provide a low di-

mensional representation of the actions. Low dimensional

representation is necessary in many cases to handle with the

limited number of training data. We consider only the lower

body torques for action representation, as they implicitly

includes the configuration of the other limbs of the body

and the external forces acting on the body such as gravity

and the ground reaction force (GRF). In most actions, human

body remains in an upright position while the legs supporting

the body. As a result, upper body parts have more influence

on the dynamics of the lower body parts. Usually, lower

body parts have little influence on the dynamics of the

upper body segment. Therefore, we choose to use the lower

body torques for action recognition. Due to low dimensional

representation, we can use simple learning and classification

framework and achieve a good classification performance

with a small number of training data.

II. RELATED WORK

Human action and activity recognition is an active area

of research in the field of computer vision for over two

decades. Large number of literatures exists in this field. A

comprehensive review of these works is presented in survey
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papers [13], [14]. However, in this section, we limit our

discussion some of the papers closely related to our research.

We categorize the approaches for human action recog-

nition on the basis of action representation. Some of the

most popular representations include learned geometrical

models of human body parts, spatio-temporal templates,

appearance or region features, shape information, interest-

point-based representations, and motion/optical flow patterns.

In the following paragraphs, we provide a brief summary of

the related work.

Appearance-based approaches learn the appearance model

of the human body or body parts and try to match it to

images in a test scene for action or gesture recognition

[15], [16]. Actions are learnt by HMM or other variants

of it. Appearance-based approach works well for gesture

recognition, since the appearance of the human hand do not

change much for the change of a person. However, such

methods do not work well for whole body actions as they

can not handle the problem of clothing or appearance change.

Shape-based representations utilize silhouettes of the hu-

man body [3] or the features derived from silhouettes [4].

The basic idea behind shape-based representation is that an

action consists of a sequence of poses that can be detected

in a single frame. Usually, recognition is based on the

single frame; however, to improve the robustness, it may

be extended to multiple frames. In [17], silhouette-based

representation was extended to characterize the outline of

human body in space-time domain. This results in a spatio-

temporal 3D volume which is constructed by stacking the

silhouettes detected in each frame. Shape-based approaches

works well on a number of actions. However, they also suffer

from a problem of silhouette changes due to clothing changes

or imperfect segmentation.

Another class of works use volumetric analysis of video

for action recognition [18], [17], [19]. Yilmaz et al. [18]

proposed to use spatio-temporal features in order to simulta-

neously exploit both shape and motion features, and Blank

et al. [17] extended a method developed for analysis of

2D shapes, to deal with volumetric spatio-temporal shapes

induced by human actions. The main advantage of the

volume-based approach is that it is not necessary to build

complex models of body configuration and kinematics. In

addition, recognition can be performed directly from the raw

video.

Recently, interest-point-based representations has gained a

lot of interest. They use spatio-temporal interest points and

their trajectories for action and activity analysis [20], [21],

[22], [23]. The main strength of this representation is the

robustness to occlusion, since there is no need to track or

detect the whole human body.

A number of researchers [5], [6], [25], [26], [24] have

used features based on motion and optical flow. Bobick et

al. [25] proposed motion energy image (MEI) to describe

the cumulative spatial distribution of motion energy in a

given sequence. Later, the idea of MEI is extended to motion

history image (MHI) [27]. In optical flow-based approaches

[5], [6], optical flow is used to derive a representation which

is suitable for recognition. It was shown in [27] that MEI

and MHI have good discriminative performance for some

particular simple action classes. However, it was reported in

[24] that MEI and MHI show unsatisfactory performance for

complex actions due to over-writing of the motion history.

In the sensor-based approaches, human action is usually

described by the output signal obtained from sensors either

attached to the human body or installed in the environment.

In [28], an effective subject recognition approach is designed

using ground reaction force (GRF) measurements of human

gait. In [29], Yang et al. proposed an action recognition sys-

tem using wearable motion sensor networks. Also, there are

several works which use acceleration data obtained from the

sensors [30] for action recognition. The main disadvantage

of the sensor-based methods is that subjects need to wear

some specialized devices or sensors or have to perform the

action in a specialized environment.

In summary, our proposed framework is different from

the previous representations in three ways. Firstly, from

the human motion, we compute joint torques using physics

model. These features are more discriminative than the

kinematics features. Secondly, information about the ground

interaction is encoded in the torques as the computation of

torques depends on the external forces. Thirdly, we use a low

dimensional representation of human actions which allows us

to achieve a good classification performance with a relatively

few training data in a simple classification framework such

as HMM.

III. FEATURE EXTRACTION

A. Kinematics Model

Our 3D articulated human body model consists of 12 rigid

body segments and has a total of 26 degrees of freedom

(DOFs), as shown in Fig. 1. We use three kinds of joints

to link segments to their parent segments: 1-DOF (hinge),

2-DOF (saddle) or 3-DOF (ball and socket) rotational joints.

This ensures that only relevant rotations about specific joint

axes are possible. The position and orientation of the root

segment is defined in the world coordinate by a 6-DOF global

joint. All segments are approximated by sticks of appropriate

lengths. We use identical lengths of body segments, mass

and inertial parameters [32] for all subjects and actions. We

estimate the internal joint torques by applying 3D motion

capture data to the model using the method described in

the next section. Note that, we are not dealing with the

tracking problem in this paper, therefore, we assume that

pose tracking data are available to us. This is a realistic

assumption as the current markerless tracking algorithms can

provide tracking result with good accuracy [33], [34].

B. Recovery of Torques

Given the mass, and the measurement of the acceleration,

the net force acting on a particle can be determined by

Newton’s second law of motion. This net force has two

components: force due to gravity and force due to contact.

This idea can be extended to analyze the dynamics (to

consider the forces and torques responsible for a motion)
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Fig. 1. Kinematic model and the DOF of each part

of human body. However, unlike a particle, human body is

articulated with a large degree of freedom. To compute the

contact forces and joint torques, we have to take account of

all the body segments which are constrained by rotational

joints. In addition, we need to consider the multiple contact

points with the environment.

To recover the ground reaction forces and the joint torques,

we follow the approach presented in [12]. For the sake of

completeness of this paper, we briefly describe this approach.

Let us consider an articulated human body with P parts and

N degrees of freedom (DoF). The root of the body has three

translational and three rotational degrees of freedom in world

coordinate. All other joint angles are defined relative to their

parent segments. This results in a (N−6) joint angles. Using

a Lagrangian formulation, we expresses the configuration of

the body in terms of its generalized coordinates, q ∈ R
N ,

and N second order differential equations which govern the

motion of the body:

M(q)q̈ = F(q, q̇)+A(q, q̇) (1)

In the equation above, q̇ and q̈ denote the first and second

time derivatives of q, M is the generalized mass matrix, F is

the vector of generalized forces acting on the N DoFs (which

includes contact, gravity, and joint torques), and A consists

of remaining terms including those necessary to enforce joint

constraints. These equations can be derived using the TMT

method described in [31]. Our objective is to recover the

(N−6) internal torques τint from the observed N generalized

accelerations. We first express F in terms of the internal

torques τint , and the external forces acting on the body:

F(q, q̇) = Aintτint + τext(q, q̇) (2)

Here the matrix Aint is responsible for mapping the joint

torques into the vector of N generalized forces. As the

estimates of internal torques depend strongly on the external

forces, we need to consider them to recover the joint torques.

We consider gravity and the GRFs as the external forces and

for GRF, we consider only two contact points in each foot.

We use an identical ground contact model as proposed in

[12] and we only used the vertical component of the ground

reaction force.

C. Feature Selection

We use HMM with output densities represented by mixture

of Gaussians, and this sometimes make the model incom-

putable due to small training dataset and we cannot learn a

good model from high dimensional data. Therefore, we use

only four joint torques from lower body parts: two knee joint

torques and two hip joint torques. These torques represent

an action with good consistency, and implicitly include the

pose of the upper body parts as well as the external forces.

IV. CLASSIFICATION FRAMEWORK

HMM is a good probabilistic framework for modeling the

dynamics of human action [15]. In our HMM configuration,

we have one hidden state variable S and each state can emit a

vector valued observation O (torque). This model is based on

two dependency assumptions: (1) hidden variable St at time

t depends only on the hidden variable at previous time step

St−1 (2) observation variable Ot at time t depends only on St .

During the training step, the model learns the parameter set λ

consisting of prior probabilities P(S0), transition probabilities

P(St |St−1), and the observation probabilities P(Ot |St) using

available observed data. Learning the parameters of these

distributions corresponds to maximizing the joint probability

P(O,S). For each action class, we learn a separate HMM

model λi. During recognition, given a test observation se-

quence O1:T , we select the class label as:

c = argmax
i

P(λi|O1:T ) (3)

Due to the use low dimensional torque and joint angle

trajectories, we did not face difficulty learning good models

from small training set using a simple HMM framework.

V. EXPERIMENTS

A. Dataset

Experiments were performed on the data set containing 3-

dimensional motion capture sequences obtained from CMU

mocap data [37]. Fig. 2 shows some typical sequences

of seven actions from this data set. In total, we use 171

sequences of 7 action classes, namely, walk, march, run, sit,

jump forward, jump in place, and hop with 27, 21, 25, 21,

25, 32, and 20 instances, respectively. All seven classes have

significant intra-class variations in terms of speed and style.

In addition, for some actions, inter-class variation is very low.

For example, joint angle trajectories of ‘walk and march’ and

‘jump in place and hop’ are quite similar for some sequences.

Walk, march, and run classes have variations in terms of

speed, stride length, bounce, and arm swing. In the sit class,

the subjects move their legs randomly after sitting on a stool.

This results in uncorrelated knee joint angles. In case of jump

forward and jump in place, knee and hip joint angles have

good similarity, and sometimes it is difficult to differentiate

if translational motion of the body is not considered. In

summary, all the action classes contain significant intra-class

variations, and therefore, this is a very challenging data set.

B. Baseline Method

We compare the results of dynamics-feature based ap-

proach with the baseline method which uses the joint angle

features and the same HMM classifier. In the baseline

method, we use two different feature sets. First set of features

consists of the 6 principal components obtained by reducing
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Fig. 2. Sample sequences of seven actions from CMU motion capture
dataset.

the original 26 dimensional joint angles by PCA. More than

98% of the variance is accounted for by these 6 principal

components. In the second set, we manually selected two

knee joint angles and two hip joint angles. These particular

joint angles have good consistency for a particular action

class whereas the other joint angles are noisy. Dimension

reduction was necessary to avoid difficulty in learning a good

model from a relatively small training dataset.

C. Parameter Selection

To fine tune the parameters of HMM, we use 10 fold cross

validation. We tune the number of states Ns and the number

of mixture components K for the best performance. For the

experiments with joint torques we used K = 3 and Ns = 3.

In case of joint angles, we used K = 4 and Ns = 2 for best

classification result.

D. Results

The classification results obtained by our approach and

those from kinematics features are shown in Table I. To

produce the results, we compute the average over 10 runs

with random permutation of training set. Using the dynamics

feature, we achieved mean accuracy of 95% on the entire

data set. Walk, run and march action classes were classified

with 100% accuracy. There was some confusion in case of

classifying jump in place, which was confused with jump

forward (15%). Remaining confusions are negligible (≤ 2%).

This is a reasonable performance considering the similarity

between these actions.

Using the baseline method, we obtained mean classifica-

tion accuracy of 78.4% in the first case (PCA reduced, 6

components) and 85.4% in the second case (4 joint angles).

Dynamics feature outperforms both of these feature sets.

These results also demonstrate that PCA selected features

were not robust for discrimination. Confusion matrices for

kinematics features are shown at the top (PCA) and the

middle of the Table I.

In case of kinematics feature, there are significant confu-

sions during the classification of run, sit, jump forward, and

jump in place classes. However, confusion was significantly

small in case of dynamics-based features.

To evaluate the discriminative power of the dynamics

and kinematics based features, we compare some of these

features for two action pairs: (1) jump forward and jump

in place (Fig. 3) and (2) run and march (Fig. 4). It can

be noticed that inter-class distance is small in case of joint

angles, whereas the distance is large in case of joint torques.

We notice that PCA reduced kinematics features also show

poor discrimination.

We have done another set of experiments to test the robust-

ness of the method in case of noisy motion capture data. To

simulate the noisy measurements, we added Gaussian noises

to all joint angles. However, for vertical distance of the foot

from the ground, we used clean motion capture data because

the accurate determination of the ground contact event is

required for computing the torques accurately. In our method,

we need to differentiate the joint angles to obtain the angular

velocities and accelerations. However, due to the abrupt

change in the noisy joint angles, we obtain unrealistic values

for velocities and accelerations. To overcome this problem,

we sampled the noisy joint angles at regular intervals and
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TABLE I

CONFUSION MATRICES. 1ST ROW: JOINT ANGLE (6 DIMENSION, USING

PCA), 2ND ROW: JOINT ANGLE (4 DIMENSION), 3RD ROW: JOINT

TORQUES (4 DIMENSION), AND 4TH ROW: JOINT TORQUES (4

DIMENSION, COMPUTED FROM NOISY JOINT ANGLES)

reconstructed the smoothed versions by using polynomial

curve fitting. With these noisy joint angles, we computed

the joint torques and the mean classification accuracy was

91.9%. Confusion matrix for this experiment is shown in

Table I. This result gives us an idea about the performance

of the method on the output of a tracker.

In our current implementation in Matlab, the system takes

few seconds to compute the torques from an action of about

100 frames. However, the processing could be made faster

by using efficient code and implementing in C/C++.

VI. CONCLUSION AND FUTURE WORK

A. Conclusion

In this paper we introduced dynamics features which

reflects the physics model for human action recognition.

These dynamics features are computed from the available
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Fig. 3. Comparison of joint angle and torque feature for two action classes
(jump forward and jump in place). Top row: knee and hip joint torques,
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place. The computed torques were not calibrated and therefore we do not
use any absolute unit for them.
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kinematics and the known mass and inertia properties of
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human body. Using these features, we expressed seven action

classes in terms of two hip and two knee joint torques,

and used them for action recognition. This low dimensional

representation allowed us to achieve a good classification

accuracy with few training data. We carried out experiments

on motion capture dataset containing different human actions

and demonstrated the superiority of these dynamics feature

over the kinematics features.

B. Future Work

We analyzed GRFs (Fig. 5) for several actions to evaluate

their potential application for action recognition. We noticed

that walk action produce similar GRFs from each foot and

the reactions from each foot has small overlap. On the other

hand, run action has picked and isolated reactions. In jump

forward and hop, GRFs from both feet varies simultaneously.

However, in case of hop, one foot does not produce any GRF

as it is hanging above the ground. There are a few actions

(such as jump forward and jump in place) for which we got

similar GRFs. Therefore, it seems possible to use GRF for

action recognition as used in [28] for subject recognition.

However, we need a better estimation of GRF and have to

consider an improved ground contact model.
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we do not use any absolute unit for them.
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