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Abstract

In this paper, we introduce a torus manifold-based
temporal super resolution method for gait recognition
from low frame-rate videos with view transitions. Given
a low frame-rate gait sequence with view transition
from an unknown person, we estimate three unknowns:
view, phase, and style. We estimate view by walking
trajectory and camera information, phase by dynamic
programming using multiview exemplar sequences, and
style by bilinear model and linear least squares. Once
these parameters are known, we can synthesize a high
frame-rate sequence corresponding to that unknown
person and can use existing methods for gait recogni-
tion. Experiments with OU-ISIR multiview gait dataset
demonstrate the effectiveness of the proposed method
for frame-rates as low as 1 or 2 fps.

1. Introduction
Human gait is a promising biometric feature for

surveillance systems that can be efficiently recognized
at a distance, and can be applied to uncooperative sub-
jects. With rapid developments of computer vision
technology, vision-based gait recognition has recently
gained considerable attention from the biometrics field
[12, 4].

Gait recognition using a low frame-rate video is a
significant problem, and due to the sparsity of the ob-
served gait phases, existing gait recognition methods do
not perform well. This problem is commonly faced in
CCTV cameras where the video is recorded at a quite
low frame-rate (e.g., 1 to 5 fps) due to limited transmis-
sion bandwidth and storage capacity.

Several methods have been proposed [2, 9, 3] to
overcome the problem in low frame-rate gait recog-
nition. Although high frame-rate videos are used as
gallery, Mori et al. [9] used low frame-rate videos
as probe sequence. As a result, this approach fails
when both probe and gallery are obtained from low
frame-rate videos. In [3], temporal interpolation us-
ing a level-set approach is proposed as a solution to
the low frame-rate gait recognition problem. However,
performance of these methods are not satisfactory in

quite low frame-rate videos (e.g., 1 or 2 fps). To over-
come the limitations of the previous approaches, Akae
et al. [2] proposed a periodic temporal super resolution
(TSR) method and demonstrated the effectiveness of the
method particularly in quite low frame-rate videos (less
than 5 fps). However, all of these approaches assumed
that a gait sequence will be observed without any view
change during a gait cycle. While observation view of
the walking person often changes during capturing, a
sufficient length of video is required for temporal su-
per resolution. Therefore, such an assumption is of-
ten violated in a real surveillance scene. In addition,
view change within a gait period degrade gait recogni-
tion performance significantly as reported in [1].

In [5], Lee et al. used multilinear models for view-
invariant gait recognition. However, this method re-
quires a high frame-rate complete gait cycle and did not
consider view change within a sequence. In [6, 7], Lee
et al. separates style and content using a torus man-
ifold for human motion tracking under view change.
These methods estimate the phase and style using a sin-
gle frame and hence, does not guarantee consistent style
parameters for an unknown test subject.

In this paper, using a torus manifold, we propose a
method for gait recognition from low frame-rate videos
with view transition. Given few low frame-rate ob-
served silhouettes, we estimate the gait phases using
dynamic programming (DP). Then using the estimated
phases, style parameters of the unknown person is esti-
mated using linear least squares. This procedure guar-
antees consistent style parameters and smooth phase
evolution. Finally, we synthesize high frame-rate gait
sequences with arbitrary views using back projection
from the torus manifold based on the reconstructed
subject-specific mapping functions.

2. Manifold Learning
The joint manifold representing gait phase and view

is modelled with a torus manifold [7] with two orthogo-
nal coordinate axes: one for view and the other for gait
phase. The torus manifold is a supervised technique
compared to unsupervised techniques (e.g. GPLVM,
LLE, ISOMAP) and has several advantages such as low
dimensionality, continuity, and unambiguity [7].

A nonlinear mapping function between points on the
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Figure 1. Overview of the phase and style
parameter estimation.

torus and the input sequences containing all views and
gait phases is learnt using [7]. For the completeness of
the paper, we briefly discuss the method here. Given a
set of points {x i ∈ R

3}(i = 1, . . . ,M) on the torus,

and their corresponding observations {y i ∈ R
d}(i =

1, . . . ,M), a nonlinear mapping function g : R3 → R
d

is learnt using radial basis function (RBF) interpolation,
and can be written in the form [7]:

y i = Dψ(x i), (1)

where D is a d × N coefficient matrix and ψ(x i) =
[k(x i, z 1), . . . , k(x i, zN )]T . Here, {z j}(j =
1, . . . , N) are a finite set of representative points on the
torus as kernel centers, not necessarily corresponding to
the data points, and k(·, ·) is the RBF kernel. The coef-
ficient matrix D is computed by solving a linear system
in the form [y1, . . . ,yM ] = D[ψ(x 1), . . . , ψ(xM )].

Given learned nonlinear mapping coefficients

{D1, D2, . . . , DNp}, corresponding to Np persons’
gait, using SVD, the shape style parameters are decom-

posed as [d1,d2, . . . ,dNp

] = AS, where dp is the
dN -dimensional vector representation of the matrix
Dp. Now a person dependent generative model for
silhouettes at a particular view, v and phase, b can be
given as a tensor product form:

ys
vb = A×1 a

s ×2 ψ(x vb), (2)

where A is a third-order tensor with dimensions d×S×
N , where S is the dimensionality of the gait style space.
as is the style vector that generates an observation ys

vb
with style s, view v, and phase b. x vb is a point on torus
manifold with view v and phase b, and the notation ×n

indicates the tensor multiplication.

3. Estimation of View, Phase, and Style
To reconstruct a high frame-rate video from a low

frame-rate and view transited video, we need to esti-
mate the views, phases, and the style parameters from
the observations. The overview of the phase and style
parameter estimation process is shown in Fig. 1. Esti-
mation of the correct style parameters depends on the
accuracy of the phase estimation. Once the style pa-
rameters are found, we can synthesize a high frame-rate
video with any phase and any of the training views. The
procedure is fast, non-iterative, and accurate.

3.1 Estimation of View

Following [11], we estimate the view direction of
each input frame. However, instead of omnidirectional
camera, we use limited viewing angle camera in our ex-
periments.

3.2 Estimation of Phase

In the phase estimation step, DP [2] is used to es-
timate the phases of the low frame-rate input frames.
However, instead of using single exemplar sequence
from the sagittal view, we use multiple exemplar se-
quences from different persons with a set of views. This
results in a very accurate phase estimation.

Continuous DP is applied directly between an in-
put low frame-rate image sequence Y in = {y in

i }(i =
1, . . . , N in) with an estimated view sequence v in =
{vini } and Nex ×Nview exemplar high frame-rate im-
age sequences Y ex = {yex

k,l,m} with corresponding

phase sequences Bex = {bexk,m} (k = 1, . . . , Nex, l =

1, . . . , Nview,m = 0, . . . , Nframe), where Nex is the
number of exemplar subjects, Nview is the number of
discrete views, and Nframe is the number of frames
in a sequence. Moreover, note that the view index l is
missing for phase sequences because the phase are syn-
chronized across Nview discrete views vex = {vexl }.

The phase of the input frames, bin = [bin1 , . . . , binNin ]
is found by the DP algorithm described in algorithm 1.
Input to the algorithm is low frame-rate image sequence
Y in with estimated views v in = [vin1 , . . . , vinNin ] and
exemplar sequences Y ex with accompanying phase se-
quences Bex. Corresponding to Nex different exem-
plars, we get Nex different phase sequences for the in-
put sequence. Finally, a phase sequence giving min-
imum cumulative cost is chosen as the optimal phase
sequence bin

opt among them. Here, Δbmin and Δbmax

are the allowable phase transition range [cycle/frame]
dependent on the allowable gait period.

3.3 Estimation of Style Parameters

We estimate the style parameter of the unknown sub-
ject by linear solution which guarantees an optimal style
parameter set in the least square sense. To do this, Eqn.
(2) is rearranged as

ys
vb = Hv,bw , (3)

where Hv,b is a rearranged mapping matrix for view
v and phase b with dimension d × K and w =
[w1, . . . , wK ]T is a K dimensional vector containing
the weights of the K learned style vectors with a con-

straint
∑K

i=i wi = 1. Now given N in input frames,
style coefficients are found by solving the following lin-
ear system:

[yT
1 , . . . ,y

T
Nin ]T = Hw , (4)
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Alg. 1 Pseudocode for phase estimation.

Input: Y ex, Bex, vex, Y in, and v in

Output: estimated phase sequence bin
opt

begin
for k = 1 to Nex do

for i = 1 to N in do
μ = arg min

l
|vexl − vini |

for m = 1 to Nframe do
if i = 1 then ck(1,m) = ||yexk,μ,m − yini ||2 else
p∗(i,m) = arg min

n
ck(i− 1, n)

(where n ∈ {n|Δbmin < bexk,m − bexk,n < Δbmax})

ck(i,m) = ck(i− 1, p∗(i,m)) + ||yexk,μ,m − yini ||2
end

end
Ck = min

m
ck(Nin,m)

q∗k(N
in) = arg min

m
ck(N

in,m)

for i = N in to 2 do
q∗k(i− 1) = p∗(i, q∗k(i))

end
end
n = arg min

k
{Ck}

for i = 1 to N in do
binopt,i = bexn,q∗n(i)

end

where H = [HT
v1,b1

, . . . , HT
vNin ,bNin

]T is a matrix

formed by concatenating each mapping matrices.

4. Experimental Results
We evaluated the proposed method with real data

from the OU-ISIR Gait Dataset [10]. Gait was per-
formed on a treadmill which was simultaneously cap-
tured by 25 synchronized cameras, and we used 5 of
them in our experiments. These 5 cameras were lo-
cated at the same height and covered view directions
from −60◦ to 60◦ at 30◦ interval. We use back-
ground subtraction-based graph-cut segmentation to ex-
tract gait silhouette images. Then scaling and registra-
tion of the extracted silhouette images is carried on. The
normalized gait silhouette size, and frame rate for each
sequence were 44× 64 pixels, and 60 fps.

We used 57 training sequences for manifold learn-
ing, and 32 exemplar sequences for DP based phase es-
timation. For evaluation, we used gait sequences from
26 subjects with view change, different from those used
in learning the manifold and in exemplars. Low frame-
rate gait sequences were constructed by down sampling
the 60 fps gait sequences at regular intervals. We used
two different phase differed and down sampled version
of gait sequences for gallery and probe. The resulting
sequences nicely simulates the low frame-rate sequence

Figure 2. Temporal super resolution re-
sults: 1st row: input low frame-rate image
sequence (3 fps), 2nd row: TSR by pro-
posed method, 3rd row: TSR using [6], 4th
row: TSR using [3], and 5th row: ground
truth.

recorded by surveillance cameras and serve as a dataset
for view transited and low frame-rate gait sequence.

4.1 Temporal Super Resolution
In Fig. 2, we compare the TSR results of the pro-

posed method with those obtained with frame-based
method (Frame-based) [6], and morphing-based tempo-
ral interpolation (Morph) [3]. Frame-based [6] uses sin-
gle frame-based phase and style estimation, and hence,
we use the average over these style parameters for TSR.
The input sequence contains five frames each with dif-
ferent view direction and captured at 3 fps. Using this
sequence, we reconstruct 34 frames/gait cycle sequence
in sagittal view. We can see that Frame-based method
cannot successfully estimate the style parameter, and,
therefore, the synthesized images differ considerably
from the ground truth. Morph based reconstruction is
also quite different from the ground truth. On the other
hand, images synthesized by the proposed method are
almost similar to the ground truth images.

4.2 Gait Recognition

In this experiment, we evaluate the proposed method
in terms of gait recognition performance and compare
it with the results obtained by Frame-based [6], Morph
[3], and without temporal super resolution (noTSR).
In our experiments, both the gallery and the probe
are low frame-rate sequences. At first, we reconstruct
high frame-rate probe and gallery sequences in case of
the proposed method, Frame-based, and Morph. In
addition, for the proposed method, and Frame-based
method, we reconstruct probe and gallery sequences
in 5 different views. Matching is done using average
silhouette feature [8], and distance between probe and
gallery is computed between the corresponding views
of probe and gallery. Finally we consider the average
distance for gait recognition. In case of noTSR, only the
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Figure 3. Gait recognition performance.

given frames are used for computing the single average
silhouette. The performance is measured in terms of re-
ceiver operating characteristics (ROC), with equal error
rate (EER), and cumulative match characteristic (CMC)
with rank-1 identification rate (see Fig. 3). From these
results, it is clear that the proposed method outperforms
the baseline methods at quite low frame-rates (e.g., 1 to
3 fps).

5. Conclusion

This paper introduced a TSR based gait recognition
method for low frame-rate videos with view transitions.
This TSR requires estimation of view, phase, and style
parameters from an input sequence. View is simply es-
timated from the camera information, and for phase es-
timation, we employed multiple exemplar high frame-
rate sequences with known phases. Finally, we used lin-
ear least square solution for style parameter estimation.
The proposed method can synthesize high frame-rate
sequence from a view transited sequence with a frame-
rate as low as 1 fps. Experimental results using OU-
ISIR gait dataset verified the effectiveness of the pro-
posed method in terms of gait recognition performance
and visual quality of the reconstructed gait sequences.
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