A Video-Based Gait Disturbance Assessment Tool for Diagnosing Idiopathic Normal Pressure Hydrocephalus

Ruochen Liao*a, Non-member
Yasushi Makihara*, Non-member
Daigo Muramatsu*, Non-member
Ikuhisa Mitsugami**, Non-member
Yasushi Yagi*, Non-member
Kenji Yoshiyama***, Non-member
Hiroaki Kazui****, Non-member
Masatoshi Takeda***,*****, Non-member

Gait is an important factor in the diagnosis of idiopathic normal pressure hydrocephalus. However, except for walking speed tests, existing diagnosis methods only assess gait qualitatively. This study proposes a quantitative and multifaceted method to assess gait disturbance via video-based analysis. We captured videos of patients walking from the front to assess four gait disturbance qualities: lateral sway, petit-pas gait, wide-base gait, and duck-footed walking. These features were selected from the Gait Status Scale-Revised, an existing scale of idiopathic normal pressure hydrocephalus gait disturbance. We confirmed that our assessments of all selected items, except for lateral sway, were consistent with physician assessment. We also used the P-value of the gait disturbance scores before and after lumbar puncture to assess the outcome of the cerebrospinal fluid tap test, and confirmed that tap-positive and tap-negative patients were successfully separated by a threshold of $P = 0.01$. © 2019 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.

Keywords: normal pressure hydrocephalus; gait; computer-aided diagnosis; computer vision

Received 11 April 2019; Revised 4 September 2019

1. Introduction

Normal pressure hydrocephalus (NPH) is a syndrome first described by Hakim and Adams [1] that is characterized by the classic clinical triad of gait disturbance, cognitive dysfunction, and urinary symptoms. NPH is further classified into secondary and idiopathic NPH (iNPH). iNPH develops without an identifiable cause, and occurs in approximately 1% of older adults [2,3].

According to the Japanese guidelines for the management of iNPH [4], iNPH is classified into three diagnostic levels: preoperatively ‘possible’, ‘probable’, and postoperatively ‘definite’. The diagnostic flow is provided as follows:

Step 1: Patients with at least one of the symptoms of dementia, gait disturbance, and urinary incontinence (known as the clinical triad) [5,6], and who meet other criteria, are diagnosed as possible iNPH.

Step 2: The possible iNPH patients who meet the criteria of a cerebrospinal fluid (CSF) examination, and who have one investigational feature obtained by morphologic brain imaging [7,8] or a CSF tap test [9,10], are diagnosed as probable iNPH. The CSF tap test is judged by the improvement of the clinical triad, particularly the gait disturbance [11,12]. More specifically, a patient undergoes fixed-distance walking tests such as the Timed Up & Go (TUG) test [13] before and after the lumbar puncture of the CSF tap test. Thereafter, the patient is labeled as tap-positive if they gain $>10\%$ improvement in walking time as an objective (quantitative) criterion, or improvement in gait disturbances through visual inspection by a physician as subjective (qualitative) criterion, otherwise, the patient is labeled as tap-negative. The tap-positive patients are then diagnosed as probable iNPH.

Step 3: A surgical procedure (i.e., a shunt surgery) is indicated for the probable iNPH patients, and the patients with improved postoperative symptoms are diagnosed as definite iNPH.

In the present study, we focused on the CSF tap test (Step 2). Because it is difficult to correctly judge all patients using a single objective criterion (i.e., the walking time), additional criteria are required. The criteria associated with qualitative gait disturbance assessment through visual inspection by a physician are useful; however, they are strongly dependent on the subjectivity and degree of proficiency of the individual physicians. Indeed, the physician requires considerable experience to make a correct judgment through visual inspection. Thus, it is necessary to develop a quantitative method to assess gait disturbances from multiple aspects to improve the accuracy of diagnosis.

© 2019 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.
Other studies assessing gait disturbance to diagnose iNPH have also used qualitative visual inspection-based methods including the dynamic gait index [14], the Tinetti performance-oriented mobility assessment [15], or a customized criterion [16,17]. Although there are several studies that discuss the quantitative assessment of gait disturbances in iNPH, the techniques require special equipment such as accelerometers [18], footswitches [19,20], knee goniometers [19], and motion capture systems [20], which are unlikely to be available for routine clinical use.

By contrast, video-based gait disturbance assessment is promising for routine clinical use as patients do not need to wear accelerometers or goniometers, and setup of a commercially available digital video camera is easier than that for aligned footswitches. Indeed, the efficacy of video-based gait analysis is well established in the fields of computer vision, pattern recognition, and biometrics. In particular, holistic silhouette-based gait representation [21,22] is widely used in video-based gait analysis, with numerous applications including human identification, forensics, gait personality measurement, gender classification, and age estimation [23–28].

The abovementioned holistic silhouette-based gait representations are, however, not necessarily effective for medical/health applications and hence we often require more directly interpretable gait features (e.g., stride [29], sudden motion variation [30], etc.) in the medical/health applications. The existing methods in medical/health field [29–31] usually extract the directly interpretable gait features from a side-view image or multiview images including side-view images. Since it requires a relatively large space to capture a walking image sequence from the side view, application scenes are limited for the methods, which require the side-view images. Considering that walking tests are often conducted at narrow corridors in the hospital in clinical practice, it is desirable to extract the gait features from frontal view to save space.

The aim of the present study is to quantitatively assess the gait disturbance of iNPH patients using video-based gait analysis (without the requirement for any special equipment), and to validate its efficacy for judgment of the CSF tap test. More specifically, we select four gait features from the gait status scale-revised (GSSR), which is used in subjective assessment by physicians, and to develop a method to quantitatively assess the four gait features to judge the CSF tap test more accurately compared with that using a single quantitative criterion (i.e., the walking time).

2. Method

2.1. Patients

We recruited eighteen patients (twelve women and six men) who were previously diagnosed with possible iNPH at Osaka University Hospital (Table I). CSF tap tests were performed on the patients, and a set of walking tests were performed twice daily over at least 5 days just before and after the tap tests. Patients judged as tap-positive in the tap test were indicated for shunt surgery, and another set of walking tests was performed after the surgery to verify the tap test results. Two tests were included in each set of walking tests: the 3 m TUG and the 10 m walking test (TMW). The tests are both round-trip walks, where the TUG starts from sitting on a chair, and contains actions for standing and sitting, whereas the TMW does not. The best time scores for each of the two walking tests were taken from each set performed before and after the CSF tap test. If either or both of the best time scores of the TUG and the TMW for a patient improved by \(> 10\% \) after the tap test, the patient was judged as tap-positive, and vice versa. Nine patients were judged to be tap-positive in the preoperative walking tests, whereas the others were tap-negative. Of the tap-positive patients, two had no improvement in their walking time (defined here as speed-negative patients) in both the TUG and the TMW, and were diagnosed with tap-positive by gait improvement assessed through visual inspection by physicians. However, the results of the postoperative walking tests proved that all nine patients had definite iNPH, indicating that the tap-positive assessment of the speed-negative patients was correct.

For gait disturbance analysis, we captured walking videos of the patients from the frontal view using a consumer digital video camera (Sony Corporation, Tokyo, Japan), with a resolution of 1920 × 1080 pixels and a frame rate of 30 frames per second. The videos included multiple trials of TUG and TMW, which were performed before and after the lumbar puncture.

2.2. Gait feature assessment

2.2.1. Gait features

To select the gait features to be assessed, we referred to an existing scale of gait disturbances of iNPH, termed the GSSR [32]. GSSR is a qualitative scale that relies on visual inspection by a physician. The GSSR consists of 10 evaluation items: lateral sway, petit-pas gait, wide-base gait, duck-footed walking, shuffle, freezing of gait, festinating gait, disturbed tandem walking, postural stability, and independence of walking. The scale requires that each item of the GSSR is rated with a discrete value (e.g., 0 and 1), and the total score is then used to judge if the patient has a gait disturbance caused by iNPH. In the present study, we focused on four items (lateral sway, petit-pas gait, wide-base gait, and duck-footed walking) because the features associated with these items can be observed from frontal gait image sequences (i.e., videos) of the patient, which can be captured relatively easily during walking tests.

2.2.2. Assessment method

The proposed assessment methods of the four items are described below. Figure 1 illustrates how the specific gait features were used.

Preprocessing We manually selected the stable-walking sequences for assessment from the video, beginning from the frame in which the patient moved his/her foot to take the first step, until the frame in which he/she takes a step to the change direction before the turn-back point. Because the walking distance was only 3 m in TUGs, the patients’ stable-walking sections were too short for assessment. Thus, we selected all image sequences from the TMWs. To prepare for the following assessment, we first
detected the patients’ faces with a commercial off-the-shelf face detector (OKAO Vision; OMRON Corporation, Kyoto, Japan), and blurred their faces for privacy protection. We then estimated the camera orientation based on the parallel lines of a corridor in the hospital, and corrected the image rotation/tilt using the camera orientation so that the image plane is perpendicular to both the ground and the wall surface. It allows us to obtain the horizontal or vertical distance of the two points by measuring the coordinates. For the silhouette-based gait analysis, we extracted the whole body silhouette of a patient. Because gait is periodic, we selected a subsequence composed of two stable gait periods with sufficient image resolution of the patient from the entire image sequence, to reduce the time required for silhouette extraction. We normally chose the last two gait periods before turning around that had no step fluctuation. We extracted the silhouette using the grab-cut algorithm [33] for semiautomatic segmentation, and added manual interventions to create a higher quality silhouette. We also manually set the bounding boxes for the patients’ regions throughout the whole sequence.

Lateral sway Lateral sway assesses the trunk’s sway during walking. As defined by the GSSR, patients with trunk sway are given a score of 1, and patients with fluctuations in their heel strike positions are given a score of 2. In the present study, we only used the score of 1 to assess trunk sway. As shown in Fig. 1(a), we computed the trajectory of each patient’s head position along a horizontal axis provided by face tracking, and subtracted the moving average of the trajectory to calculate the deviation of the head from the midline of the body. We then normalized the deviation by the patient’s height (i.e., the height of the bounding box to the patient) because the amount of lateral sway is scaled by the patient’s height, and computed the mean of the normalized deviation as the lateral sway score

\[q_{LS} = \frac{1}{h_i} \frac{1}{n - \lceil p/2 \rceil} \sum_{i=\lceil p/2 \rceil}^{n-\lceil p/2 \rceil} (c_i - \bar{c}_i), \]

where \(h_i \) (pixel) is the height of bounding boxes (i.e., the height of a patient) at the \(i \)th frame, \(n \) (frame) is the number of frames in an image sequence, \(p \) (frame) is the gait period of patient, \(\lfloor \cdot \rfloor \) is a floor function, \(c_i \) is the horizontal position of the center of patient’s head at the \(i \)th frame, and \(\bar{c}_i \) is a moving average of \(c_i \) with a period of \(p \), which can be computed as,

\[\bar{c}_i = \frac{1}{p} \sum_{k=\lceil p/2 \rceil}^{\lfloor p/2 \rfloor} c_k. \]

Petit-pas gait Petit-pas gait literally means ‘gait with a very small stride’. As shown in Fig. 1(a), we counted the number of steps during the walking test and calculated the stride. Because the stride is scaled by the patient’s height, we normalized the stride by the height of the bounding boxes, and then defined the normalized value as the petit-pas gait score

\[q_{PG} = \frac{1}{h_{\text{max}}} L, \]

where \(h_{\text{max}} \) is the maximum height of bounding boxes when patient reaches the turn-back point, \(L \) is the length of the walking course, and \(n_i \) is the number of steps.

Wide-base gait and duck-footed walking A wide-base gait means that the lateral interval between the feet of the patient while the walking is wide. Duck-footed walking means that the
patient's large toe is oriented outwardly during the stance phase. Because both features are observable during the stance phase, we try extracting the stance phases from a silhouette sequence. For this purpose, we first locate feet search window whose bottom, left, and right coincide with the bottom, the left, and the right of the bounding box, respectively, and whose height is set in proportion to the height of the bounding box. We then divide the window by its horizontal middle point into left/right foot search subwindows, and a silhouette region inside the left/right foot search subwindow is regarded as left/right foot region. We then extract the bottom of the left/right foot region as the foot bottom points. Finally, we can estimate a phase ϕ_i (stance phase or non-stance phase) at the ith frame by analyzing the vertical movement of the foot bottom points based on the assumption that the vertical movement should be small at the stance phase as

$$
\phi_i = \begin{cases}
\text{Stance phase,} & \Delta y_i^b \leq \alpha \\
\text{Non-stance phase,} & \text{otherwise}
\end{cases}
$$

where y_i^b is the vertical position of the foot bottom points, and α is a threshold to judge the phase. The threshold is automatically determined by Otsu's discriminant analysis criterion on a histogram obtained by a set of the vertical movements of the foot bottom points.

We analyzed the silhouettes of the stance phases for evidence of a wide-base gait or duck-footed walking (Fig. 1(b)). In the assessment of wide-base gait, we calculated the horizontal distance between the innermost points of the foot silhouettes during adjacent stance phases, and normalized them by the height of bounding boxes. The mean of these normalized values was defined as the wide-base gait score

$$
q_{WG} = \frac{1}{n_{sp}^{\text{sp}}} \sum_{s=1}^{n_{sp}^{\text{sp}}} \text{distance}(x_s, x_{s+1}),
$$

where n_{sp} is the total number of stance phase of both feet, and x_s is the horizontal position of the innermost point of the landing foot's silhouette in the stance phase s.

In the assessment of duck-footed walking, we first extracted the foot silhouette's region by setting bounding boxes for the left/right foot that were proportional to the full-body bounding box. The proportion was predefined experimentally so that the bounding boxes can contain the left/right foot. We then computed the principal axes of the foot silhouette's region by principal component analysis during the stance phase, and assessed the length of first and second principal axes. The ratio of the length of the first and second principal axes is close to 1 when the toe is straight forward, and is larger as the toe is oriented outward. We therefore defined the sum of the ratios of the two feet as the score of duck-footed walking. The score is defined by

$$
q_{DW} = \sum_{fc\in\{\text{left, right}\}} \frac{1}{n_{sp}^{\text{sp}}} \sum_{j=1}^{n_{sp}^{\text{sp}}} r_{f,1}^{s,j},
$$

where $r_{f,1}^{s,j}$ is the length of the kth principal component of the foot f's region in stance phase s, and n_{sp}^{sp} is the number of stance phases of the foot f.

Unlike the first two features, wide-base gait and duck-footed walking are assessed from only two walking cycles where the silhouettes are extracted.

2.3. Judgment of the CSF tap test

We used the four gait features (i.e., lateral sway, petit-pas gait, wide-base gait, and duck-footed walking) extracted from a gait image sequence and the walking time to improve the judgment for the CSF tap test. Because it was previously reported that the speed of turning around is important for the CSF tap tests [34,35], we also used the time for turning around at the halfway point of the TUG and the TMW, in addition to the total walking time. Specifically, we manually set the frame where the patient moved his/her foot to take the first step at the start time, and set the frame where the patient crossed the finish line at the end time, to assess the total time spent for walking. Similarly, we assessed the turning time by selecting the frame where the patient changed direction to turn at the start time, and set the frame where the patient completed the turn and took the first step to walk straight at the end time.

We used a statistical method to calculate a score for the judgment. We employed a t-test for each feature, and calculated the P-values of each assessment before and after the tap test. We then selected the minimum P-value of all the features as the judgment scores (i.e., we selected the feature with the best improvement).

3. Results

3.1. Feature assessment

Assessment of the four features (i.e., lateral sway, petit-pas gait, wide-base gait, and duck-footed walking) is shown in Fig. 2. To clarify the relationship between the assessed values and the GSSR scores determined by physicians, we grouped patients by the GSSR scores and sorted them by the assessed values within each group. The assessed values of the time measurements are also shown in Fig. 3, which are used to help judging the results of the tap-test in current clinical practice.

As shown in Fig. 3, there was a significant improvement in the walking time of some tap-positive patients (e.g., patients P2, P3, and P6), while the walking time is a quantitative feature used in current clinical practice. The tap-positive patients did not always exhibit significant time improvements (e.g., patient P1), implying that the walking time alone is insufficient for accurate judgment of the tap-test. However, we noticed that patient P1 had a significant improvement in lateral sway ($P < 0.01$), while the speed-negative patients P8 and P9 had a significant improvement in lateral sway and petit-pas gait.

We also compared the assessed values obtained by our quantitative assessment method with the GSSR scores determined by the subjective physician assessments. As shown in Fig. 2, the assessed values and the GSSR scores showed a similar trend for petit-pas gait, wide-base gait, and duck-footed walking, except for a few cases. However, there were no differences in the assessed values of lateral sway between the patients with a score of 0 and those with a score of 1 or 2.

3.2. Judgment of the CSF tap test

For each patient, we calculated the P-values before and after the tap-test for each gait feature and for walking time. The results are shown in Table II. The selected minimum P-value for each patient is shown in Fig. 4, which is used to judge the results of the tap test. The assessed values of the corresponding features before and after the CSF tap test are listed in Table III. The minimum P-values for the two speed-negative patients (i.e., P8 and P9) were <0.005, which supports the requirement for multifaceted assessments to improve clinical judgment by the physician.

We also found that the minimum P-values of all tap-positive patients were always less than those of all tap-negative patients. Thus, we can successfully confirm tap-positive and tap-negative patients based on the minimum P-value derived from the assessed
gait disturbance features with an appropriate threshold (e.g., \(P = 0.01\)).

4. Discussion

We assessed the four gait disturbance features of iNPH quantitatively, and confirmed that most of the assessed values of petit-pas gait, wide-base gait, and duck-footed walking were consistent with the physicians’ judgment, while the assessment of lateral sway has some discrepancies. We also used the assessed value to improve the judgment for the CSF tap test, and concluded that judgment using silhouette-based gait assessment is more effective than existing quantitative judgment methods, which only use the recorded walking time.
Fig. 3. Time measurements, as shown by the average ± standard deviation for the sample mean. The improvement in the total walking time is slightly different from that in Table II, e.g., P1, P3, P8, and P9. This is because the physician uses the best score to judge improvement, while we use the mean and standard deviation for the sample mean. (a) Total time of TWM; (b) turning time in TMW; (c) total time of TUG; (d) turning time in TUG

Table II. The P-values of all gait features and walking time measurements

<table>
<thead>
<tr>
<th>Patient no.</th>
<th>Lateral sway</th>
<th>Petit-pas gait</th>
<th>wide-base gait</th>
<th>Duck-footed walking</th>
<th>Total time of TMW</th>
<th>Turning time in TMW</th>
<th>Total time of TUG</th>
<th>Turning time in TUG</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>0.006</td>
<td>0.059</td>
<td>0.824</td>
<td>0.990</td>
<td>0.144</td>
<td>0.412</td>
<td>0.496</td>
<td>0.649</td>
</tr>
<tr>
<td>P2</td>
<td>0.244</td>
<td>0.032</td>
<td>0.044</td>
<td>0.038</td>
<td>0.006</td>
<td>0.034</td>
<td>0.004</td>
<td>0.020</td>
</tr>
<tr>
<td>P3</td>
<td>0.061</td>
<td>0.001</td>
<td>0.999</td>
<td>0.825</td>
<td>7.0E-05</td>
<td>0.002</td>
<td>0.060</td>
<td>0.040</td>
</tr>
<tr>
<td>P4</td>
<td>0.485</td>
<td>0.021</td>
<td>0.809</td>
<td>0.519</td>
<td>2.0E-05</td>
<td>0.101</td>
<td>0.013</td>
<td>4.0E-04</td>
</tr>
<tr>
<td>P5</td>
<td>0.105</td>
<td>0.198</td>
<td>0.988</td>
<td>0.003</td>
<td>0.213</td>
<td>0.190</td>
<td>0.016</td>
<td>0.054</td>
</tr>
<tr>
<td>P6</td>
<td>0.036</td>
<td>0.174</td>
<td>0.381</td>
<td>0.912</td>
<td>0.016</td>
<td>0.004</td>
<td>0.017</td>
<td>0.034</td>
</tr>
<tr>
<td>P7</td>
<td>0.105</td>
<td>0.006</td>
<td>0.120</td>
<td>0.052</td>
<td>0.009</td>
<td>0.137</td>
<td>0.002</td>
<td>0.054</td>
</tr>
<tr>
<td>P8</td>
<td>0.576</td>
<td>0.005</td>
<td>0.158</td>
<td>0.184</td>
<td>0.003</td>
<td>0.102</td>
<td>0.251</td>
<td>0.562</td>
</tr>
<tr>
<td>P9</td>
<td>3.0E-05</td>
<td>0.010</td>
<td>0.362</td>
<td>0.407</td>
<td>0.043</td>
<td>0.072</td>
<td>0.008</td>
<td>0.021</td>
</tr>
<tr>
<td>N1</td>
<td>0.697</td>
<td>0.278</td>
<td>0.426</td>
<td>0.657</td>
<td>0.078</td>
<td>0.100</td>
<td>0.053</td>
<td>0.194</td>
</tr>
<tr>
<td>N2</td>
<td>0.090</td>
<td>0.724</td>
<td>0.414</td>
<td>0.513</td>
<td>0.451</td>
<td>0.564</td>
<td>0.274</td>
<td>0.388</td>
</tr>
<tr>
<td>N3</td>
<td>0.283</td>
<td>0.957</td>
<td>0.122</td>
<td>0.768</td>
<td>0.420</td>
<td>0.731</td>
<td>0.241</td>
<td>0.308</td>
</tr>
<tr>
<td>N4</td>
<td>0.145</td>
<td>0.291</td>
<td>0.872</td>
<td>0.153</td>
<td>0.429</td>
<td>0.116</td>
<td>0.956</td>
<td>0.114</td>
</tr>
<tr>
<td>N5</td>
<td>0.059</td>
<td>0.503</td>
<td>0.158</td>
<td>0.730</td>
<td>0.610</td>
<td>0.874</td>
<td>0.076</td>
<td>0.968</td>
</tr>
<tr>
<td>N6</td>
<td>0.951</td>
<td>0.865</td>
<td>0.455</td>
<td>0.304</td>
<td>0.088</td>
<td>0.691</td>
<td>0.462</td>
<td>0.536</td>
</tr>
<tr>
<td>N7</td>
<td>0.230</td>
<td>0.389</td>
<td>0.402</td>
<td>0.130</td>
<td>0.018</td>
<td>0.195</td>
<td>0.131</td>
<td>0.500</td>
</tr>
<tr>
<td>N8</td>
<td>0.185</td>
<td>0.020</td>
<td>0.408</td>
<td>0.827</td>
<td>0.075</td>
<td>0.139</td>
<td>0.704</td>
<td>0.666</td>
</tr>
<tr>
<td>N9</td>
<td>0.109</td>
<td>0.555</td>
<td>0.848</td>
<td>0.427</td>
<td>0.467</td>
<td>0.062</td>
<td>0.211</td>
<td>0.072</td>
</tr>
</tbody>
</table>

The minimum P-value of each patient is marked in bold.
Next, we will further discuss the challenges encountered in the development of our methodology, including some inconsistencies in lateral sway, and compare our method to that used by the physicians.

4.1. Lateral sway According to the definition of lateral sway in the GSSR, a score of 2 indicates a fluctuation in the patient’s heel strike position, a score of 1 indicates trunk sway, and a score of 0 indicates no sway or heel strike abnormality. Because our proposed method assesses trunk sway, it was expected to appropriately reflect the 0 and 1 scores. However, during our interviews with the physicians, the physicians stated that they assigned a score of 1 to patients who exhibited a trunk sway or those with a small degree of heel strike fluctuation, while they only assigned a score of 2 when frequent fluctuations in heel strike position were observed. Thus, we asked the physicians to reassess lateral sway using the strict definition of GSSR, which provided more consistency in the assessed values between our video-based analysis and the physicians’ judgment. This is because physicians often associated lateral sway with a sense of balance during walking, and therefore, associated the frequency of fluctuations in heel strike with lateral sway scores. Thus, we suggest that the inconsistency of findings using our method compared with physicians’ judgment is derived, at least in part, from differences in understanding of the definitions.

The ambiguity of the subjective judgment also influences the judgment of the physicians. From the interviews, we found that physicians often assign a better lateral sway score to patients exhibiting a lateral sway than that derived from iNPH. For example, physicians assigned a score of 0 to a patient walking fast during the test despite the presence of lateral sway because typical iNPH patients walk slowly. A lateral sway derived from fast walking was considered unimportant when rating the lateral sway for iNPH. Another patient was assigned a score of 0 despite the presence of a body sway because she had no petit-pas gait, wide-base gait, duck-footed walking, or other typical features of iNPH gait disturbance. Thus, the physicians felt that the sway was from another cause. As such, the judgment of the physicians often deviated from the definition of lateral sway.

4.2. Wide-base gait and duck-footed walking As previously described, we assessed the wide-base gait and duck-footed walking features of all patients using a selected subsequence of two gait cycles in which the patients walked stably. We asked the physicians to review the selected gait segment, and they confirmed that the assigned values for these sequences were reasonable. Thus, we concluded that the proposed silhouette analysis-based method for wide-base gait and duck-footed walking was appropriate.

However, physicians assessed the entire gait sequence, which includes the stable gait sequence as well as the unstable gait sequence that often occurs when the patient turns or begins to walk. As such, our proposed method may miss gait disturbances if they are observed outside of our selected sequence. The assessed values of several patients with walking labels that were inconsistent with physician observations may relate to this subsequence selection problem. In future studies, we will extend our analysis to the entire gait sequence.

5. Conclusion

We propose a video-based method to improve gait disturbance assessment for iNPH. The proposed method can assess gait features independently of a physician’s experience, and we validated that the method using the assessed value is more accurate than current qualitative methods for judging the CSF tap test. We assessed lateral sway, petit-pas gait, wide-base gait, and duck-footed walking, as well as the walking times, of the tests using gait silhouette analysis. We confirmed the effectiveness of our proposed method with experiments on the CSF tap test judgment with nine tap-positive and nine tap-negative patients.

Some of the assessed values, however, remained partially inconsistent with the GSSR scores assigned by the physicians. One reason for this failure is that the proposed gait feature

<table>
<thead>
<tr>
<th>Feature</th>
<th>P1 Lateral sway</th>
<th>P2 Total time of TUG (s)</th>
<th>P3 Total time of TMW (s)</th>
<th>P4 Total time of TMW (s)</th>
<th>P5 Duck-footed walking (ratio)</th>
<th>P6 Turning time in TMW (s)</th>
<th>P7 Total time of TUG (s)</th>
<th>P8 Total time of TMW (s)</th>
<th>P9 Lateral sway (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-tap Mean</td>
<td>1.20</td>
<td>944.8</td>
<td>745.6</td>
<td>607.5</td>
<td>2.56</td>
<td>67.5</td>
<td>533.5</td>
<td>1528.6</td>
<td>1.60</td>
</tr>
<tr>
<td>SD</td>
<td>0.06</td>
<td>82.3</td>
<td>12.8</td>
<td>11.6</td>
<td>0.03</td>
<td>5.2</td>
<td>25.3</td>
<td>86.0</td>
<td>0.03</td>
</tr>
<tr>
<td>Post-tap Mean</td>
<td>1.01</td>
<td>608.5</td>
<td>627.5</td>
<td>511.7</td>
<td>2.44</td>
<td>47.5</td>
<td>427.5</td>
<td>1138.8</td>
<td>1.41</td>
</tr>
<tr>
<td>SD</td>
<td>0.04</td>
<td>58.3</td>
<td>7.8</td>
<td>6.0</td>
<td>0.02</td>
<td>3.2</td>
<td>23.1</td>
<td>80.7</td>
<td>0.03</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Feature</th>
<th>N1 Total time of TUG (s)</th>
<th>N2 Lateral sway (%)</th>
<th>N3 Wide-base gait (%)</th>
<th>N4 Turning in TUG (s)</th>
<th>N5 Lateral sway (%)</th>
<th>N6 Total time of TMW (s)</th>
<th>N7 Total time of TMW (s)</th>
<th>N8 Petit-pas gait (m)</th>
<th>N9 Turning in TMW (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-tap Mean</td>
<td>379.4</td>
<td>1.93</td>
<td>1.56</td>
<td>71</td>
<td>1.23</td>
<td>474.4</td>
<td>965.6</td>
<td>0.66</td>
<td>126.5</td>
</tr>
<tr>
<td>SD</td>
<td>33.4</td>
<td>0.06</td>
<td>0.52</td>
<td>2.3</td>
<td>0.04</td>
<td>12</td>
<td>52.6</td>
<td>0.01</td>
<td>12.9</td>
</tr>
<tr>
<td>Post-tap Mean</td>
<td>315</td>
<td>1.83</td>
<td>0.73</td>
<td>60</td>
<td>1.16</td>
<td>455</td>
<td>827.5</td>
<td>0.71</td>
<td>101.5</td>
</tr>
<tr>
<td>SD</td>
<td>14.3</td>
<td>0.03</td>
<td>0.3</td>
<td>5</td>
<td>0.02</td>
<td>5</td>
<td>12.5</td>
<td>0.02</td>
<td>5.5</td>
</tr>
</tbody>
</table>
extraction and assessment method is different from the physicians’ own customized criteria for GSSR. Future studies are required to improve our proposed method by considering the frequency of fluctuations in each patient’s heel strike position and the multifactorial dependency of the GSSR.

Another potential issue for clinical application of our method is that the manual work (e.g., silhouette modification, bounding box assigning, and step counting) is time consuming. To improve this, we are currently examining automatic extraction of the silhouette using a deep learning-based method (e.g., the RefineNet [36]). In future studies, we will also capture kinematic information of patients using depth sensors for more intuitive and accurate assessment of the features.

Acknowledgments

This work was supported in part by ‘Dynamic Alliance for Open Innovation Bridging Human, Environment and Materials’ from the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT).

References

440
Ikuhisa Mitsugami (Non-member) received his B.S. degree in Daigo Muramatsu (Non-member) received his B.S., M.E., and Yasushi Makihara (Non-member) received an M.S. degree in information science and technology from Osaka University, Japan in 2014. He is currently pursuing a Ph.D. degree in computer science at Osaka University. His research interests are computer vision, healthcare, including gait analysis.

Ruochen Liao (Non-member) received an M.S. degree in computer vision, human interfaces, and human behavior analysis. He is a ciate Professor of the Graduate School of Information Sciences, fusion. He is a member of the IEEE, IEICE, and the IPSJ.

Yasushi Makihara (Non-member) received his B.S., M.S., and Ph.D. degrees in Engineering from Osaka University in 2001, 2002, and 2005, respectively. He is currently an Associate Professor of the Institute of Scientific and Industrial Research, Osaka University. His research interests are computer vision, pattern recognition, and image processing, including gait recognition, pedestrian detection, morphing, and temporal super resolution. He is a member of IPSJ, IEICE, RSJ, and JSME.

Daigo Muramatsu (Non-member) received his B.S., M.E., and Ph.D. degrees in electrical, electronics, and computer engineering from Waseda University, Tokyo, Japan, in 1997, 1999, and 2006, respectively. He is currently an Associate Professor of the Institute of Scientific and Industrial Research, Osaka University. His current research interests include gait recognition, signature verification, and biometric fusion. He is a member of the IEEE, IEICE, and the IPSJ.

Ikuhisa Mitsugami (Non-member) received his B.S. degree in engineering from Kyoto University in 2001, and M.S. and Ph.D. degrees in engineering from Nara Institute of Science and Technology in 2003 and 2007, respectively. He then started working for the Academic Center for Computing and Media Studies, Kyoto University, and in 2010 became an Assistant Professor of the Institute of Scientific and Industrial Research, Osaka University. He is currently an Associate Professor of the Graduate School of Information Sciences, Hiroshima City University. His research interests are computer vision, human interfaces, and human behavior analysis. He is a member of IEEE, IEICE, IPSJ, and VRSJ.

Yasushi Yagi (Non-member) is the Executive Vice President of Osaka University. He received his Ph.D. degree from Osaka University in 1991. In 1985, he joined the Product Development Laboratory, Mitsubishi Electric Corporation, where he worked on robotics and inspections. He became a Research Associate in 1990, a Lecturer in 1993, an Associate Professor in 1996, and a Professor in 2003 at Osaka University. He was also Director of the Institute of Scientific and Industrial Research, Osaka University from 2012 to 2015. International conferences for which he has served as Chair include FG1998 (Financial Chair), OMINVIS2003 (Organizing chair), ROBIO2006 (Program co-chair), ACCV2007 (Program chair), PSVT2009 (Financial chair), ICRA2009 (Technical Visit Chair), ACCV2009 (General chair), ACPR2011 (Program co-chair), and ACPR2013 (General chair). He has also served as the Editor of the IEEE ICRA Conference Editorial Board (2007−2011). He is an editorial member of IJCV, and the Editor-in-Chief of IPSJ Transactions on Computer Vision & Applications. He was awarded the ACM VCST2003 Honorable Mention Award, IEEE ROBIO2006 Finalist of T.J. Tan Best Paper in Robotics, IEEE ICRA2008 Finalist for Best Vision Paper, MIRU2008 Nagao Award, and the PSVT2010 Best Paper Award. His research interests are computer vision, medical engineering, and robotics. He is a fellow of IPSJ and a member of IEICE, RSJ, and IEEE.

Kenji Yoshiyama (Non-member) received his M.D. and Ph.D. degrees in medical science form Osaka University, Japan, in 1996 and 2004, respectively. He is currently an Associate Professor of the Department of Psychiatry, Osaka University Medical School. His research interests are cognitive neuroscience, neuropsychiatry, neuropsychology, and geriatric psychiatry. He is a member of the Japan Neuroscience Society, the Japanese Society of Psychiatry and Neurology, the Neuropsychology Association of Japan, the Japan Society for Higher Brain Dysfunction, the Japan Society of Mood Disorders, the Japan Society for Dementia Research, and the Japanese Psychogeriatric Society.

Hiroaki Kazui (Non-member) received his B.S. degree in Medicine from Tottori University in 1989, and Ph.D. degree in Medicine from Osaka University in 1995. He is currently a Professor of Medicine (Neuropsychiatry) at Kochi University. His research interests are development of treatments for dementia, including idiopathic normal pressure hydrocephalus. He is a member of the International Psychogeriatric Association and International Society for Hydrocephalus and Cerebrospinal Fluid Disorders.

Masatoshi Takeda (Non-member) graduated from Dartmouth College, New Hampshire, USA, in 1972, Osaka University Medical School, Japan, with an MD in 1979, and the Graduate School of Osaka University with a PhD in 1983. Professor Takeda started his research career with work on functional impairment of cytoskeletal proteins in the dementia brain. He spent 2 years as a post doc at the University of Florida, USA, and Baylor College of Medicine, USA, from 1985 to 1987, and then continued studying the biochemistry and molecular biology of cytoskeletal proteins in the Department of Neuropsychiatry, Osaka University Medical School, one of the leading psychogeriatric centers in Japan. He was Chairman Professor at the Department of Psychiatry, Osaka University Graduate School of Medicine, from 1996 to 2015. He is currently the president of Aino University.