Full-dimensional Sampling and Analysis of BSSRDF

CHIKA INOSHITA1,a) SEIICHI TAGAWA1,b) MD. ABDUL MANNAN1,c) YASUHIRO MUKAIGAWA1,d) YASUSHI YAGI1,e)

Overview

Full-dimensional (8-D) BSSRDF completely expresses various light interactions on object surface such as reflection and subsurface scattering. However, it is difficult to sample full-dimensional BSSRDF because it requires many illuminations and observations from various directions. There are many research which approximated BSSRDF as a low-dimensional function by only considering the medium as homogeneous or assuming isotropic scattering. Therefore, in this research, we show a novel sampling and analyzing method for full-dimensional BSSRDF of real scenes. We sample the BSSRDF using a polyhedral mirror system to place a lot of virtual cameras and projectors. In addition, we propose a method of decomposition of BSSRDF into isotropic and anisotropic components for scattering analysis. We show the empirical characteristics of subsurface scattering inside a real medium by analyzing sampled full-dimensional BSSRDF.

Full-dimensional BSSRDF

BSSRDF represents light interaction such as subsurface scattering. This phenomenon is parameterized by incident position x_i, incident angle ω_i, outgoing position x_o, and outgoing angle ω_o.

$$\text{BSSRDF: } f(x_i, \omega_i, x_o, \omega_o)$$

Requirements:
- Surrounding the target object with a lot of cameras and projectors
- Cameras/projectors must be distributed with uniform density at constant distance

Our solution:

Turtleback reflector

Polyhedral mirror which distributes 48 virtual cameras and projectors on a hemisphere

Sampling positions on a hemisphere

Sampled BSSRDF and its visualization

We sampled BSSRDF of three different types of target materials; epoxy resin (optically thin), rubber eraser (optically dense) and marble (inhomogeneous). We also visualize sampled BSSRDF as low dimensional slices.

Captured images with fixed illumination \((\theta_i, \phi_i)=(44.9^\circ, 74.8^\circ)\) \((g=4.5)\)

Decomposition of BSSRDF into isotropic/anisotropic components

We decompose sampled BSSRDF into isotropic (angular independent) and anisotropic (angular dependent) components for scattering analysis.

Principle: Scattering consists of anisotropic and isotropic components

\[
\text{Both components} = \text{Anisotropic component} + \text{Isotropic component}
\]

Decomposed results:

Rubber eraser Marble

Acknowledgement

This research is granted by the Japan Society for the Promotion of Science (JSPS) through the “Funding Program for Next Generation World-Leading Researchers (NEXT Program),” initiated by the Council for Science and Technology Policy (CSTP).