Full-dimensional Sampling and Analysis of BSSRDF

Chika Inoshita^{1,a)} Seiichi Tagawa^{1,b)} Md. Abdul Mannan^{1,c)} Yasuhiro Mukaigawa^{1,d)} Yasushi Yagi^{1,e)}

Overview

Full-dimensional (8-D) BSSRDF completely expresses various light interactions on object surface such as reflection and subsurface scattering. However, it is difficult to sample full-dimensional BSSRDF because it requires many illuminations and observations from various directions. There are many research which approximated BSSRDF as a lowdimensional function by only considering the medium as homogeneous or assuming isotropic scattering. Therefore, in this research, we show a novel sampling and analyzing method for full-dimensional BSSRDF of real scenes. We sample the BSSRDF using a polyhedral mirror system to place a lot of virtual cameras and projectors. In addition, we propose a method of decomposition of BSSRDF into

- ¹ The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki-shi, Osaka, 567–0047, Japan
- $^{\rm a)} \quad inoshita@am.sanken.osaka-u.ac.jp$
- ^{b)} tagawa@am.sanken.osaka-u.ac.jp
- c) mannan@am.sanken.osaka-u.ac.jp
- $^{\rm d)}~$ mukaigaw@am.sanken.osaka-u.ac.jp
- ^{e)} yagi@am.sanken.osaka-u.ac.jp

isotropic and anisotropic components for scattering analysis. We show the empirical characteristics of subsurface scattering inside a real medium by analyzing sampled fulldimensional BSSRDF.

Full-dimensional BSSRDF

BSSRDF represents light interaction such as subsurface scattering. This phenomenon is parameterized by incident position x_i , incident angle ω_i , outgoing position x_a and outgoing angle ω_a .

Sampling system using polyhedral mirror system

Requirements:

- Surrounding the target object with <u>a lot of cameras and projectors</u>
- Cameras/projectors must be distributed with uniform density at constant distance

Our solution:

*Tagawa, S., Mukaigawa, Y., Kim, J., Raskar, R., Matsushita, Y. and Yagi, Y.: Hemispherical Confocal Imaging, IPSJ Trans. on Computer Vision and Applications, Vol. 3, pp. 222-235 (2011).

Sampled BSSRDF and its visualization

We sampled BSSRDF of three different types of target materials; epoxy resin (optically thin), rubber eraser (opticallydense) and marble (inhomogeneous). We also visualize sampled BSSRDF as low dimensional slices.

Decomposition of BSSRDF into isotropic/anisotropic components

We decompose sampled BSSRDF into isotropic (angular independent) and anisotropic (angular dependent) components for scattering analysis.

Acknowledgement

This research is granted by the Japan Society for the Promotion of Science (JSPS) through the "Funding Program for Next Generation World-Leading Researchers (NEXT Program)," initiated by the Council for Science and Technology Policy (CSTP).