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Abstract

In this paper, we bring out a new density-based clus-
tering initialization algorithm which is invariant to the
scale factor. Instead of using the scale factor while
the cluster initialization, in this research, we determine
the number and position of clusters according to the
changes of cluster density with the division and ag-
glomeration processes. During the division process, the
initial cluster seeds are produced by a self-propagate
method according to the density changes. The num-
ber of clusters is determined by agglomerating pair of
RNN (reciprocal nearest neighbor) cluster seeds, when
the density of newly merged cluster is increased. When
no more cluster seeds can be merged any more, the re-
mained number of cluster seeds is regarded as the real
cluster number. Through various experiments, the ef-
fectiveness of the proposed algorithm has been proved.

1. Introduction

Clustering algorithm is an elemental part of pattern
recognition. Its kernel is to classify the unlabeled na-
ture data into meaningful groups with little prior infor-
mation. However, most of the clustering algorithms re-
quire the user to provide the initial number and position
of clusters, when the number of clusters is huge, this
work is tedious and difficult to be manually performed.

To solve this problem, the clustering initialization al-
gorithms can be divided into two types: (I) assuming
the number of clusters is given, searching for the best
initial position; (II) both the position and number of
clusters are assumed to be unknown.

SMEM (Split-Merge EM) algorithm [6] (type I) esti-
mates the best initial position of clusters by embedding
the split-merge criterion into EM algorithm. The clus-
ter that maximizes the split criterion (a ratio between
the local data density and the density of current pa-

rameter) will be split. When the posterior of each data
in two neighbor clusters is almost equal to each other,
such two clusters are merged together. The SMEM will
be stopped when the Q function value is maximized.
Improved step-wise SMEM algorithm (SSMEM)[9] al-
lows both the initial position and number of clusters
to be unknown. However, its success depends on the
manually selected threshold of split and merge criterion.
The success of LBG [4] also relies on the prior known
number of clusters and the carefully selected threshold.

The initialization methods of type II can be fur-
ther categorized into: divisive and agglomerative types.
Simple Cluster Seeking (SCS) [2] method (divisive
type) searches for the new cluster seeds whose distance
to the previous seed is longer than the fixed threshold,
where the initial seed is randomly assigned.

Random sampling [1] is widely applied for the ag-
glomerative cluster initialization. In [1], the uniformly
sampled cluster seeds that can not attract data will be ig-
nored and the remained seeds is used as the initial clus-
ters. The problem is that its result is not reliable if the
number of seeds is smaller than that of real clusters.

Compared with the distance-based divisive initial-
ization algorithms, the density-based methods [5, 7, 12]
can be regarded as the non-parameter method which
uses the gradient to describe the cluster feature. Mode
seeking method [5] can detect the clusters by merging
two randomly sampled cluster seeds together when the
distance between them is smaller than the selected scale
factor. Therefore, the performance of this algorithm
heavily depends on the selection of scale factor. Further
studies on the auto selection of scale factor (e.g. influ-
ence zones [7], critical scale [12]) have been reported.

To solve the problem of selecting scale factor, we
bring out a scale-invariant density-based cluster initial-
ization algorithm. The key contribution of this work is
to use the density changes to detect the cluster bound-
ary. Since the gap between clusters can be considered
as the cluster boundary whose density is zero, merging



two isolated clusters will decrease the density of merged
cluster. Therefore, after producing the initial cluster
seeds with a self-propagate method, the final number
of clusters can be determined by iteratively merging
two RNN clusters if the density of merged cluster is in-
creased until no more cluster seeds can be merged.

2. Scale-invariant density-based clustering
initialization

2.1 Division Criterion

Although random sampling can be applied to pro-
duce the initial cluster seeds, the assumption of its suc-
cess is that the sampled seeds are more than the number
of real clusters.

Therefore, large number of initial seeds is always re-
quired in random sampling, which will lead to much
useless computation on the dead seeds. Especially,
when the dataset is unknown, it is almost impossible
to know how many initial seeds are enough.

To solve this problem, in this work, an iterative di-
vision method is used to produce the cluster seeds ac-
cording to the natural density distribution of clusters.
The dataset is firstly divided into m regions as ri, and
the density of ri is calculated as:

di =
Ni

Vi
(i = 1 ∼ m), (1)

where Ni, Vi represent the number of data and volume
of ri, respectively. To avoid the unnecessary computa-
tion on the dead cluster seeds, dead seed is defined as:

di ≤ k ∗ dmean, dmean =
1
K

K∑

i=1

di, (di �= 0),

(2)
where, k is a constant and K is the number of non-
dead seeds. Such dead seeds will be ignored and the
remained seeds will be 4-equal divided into R j

i , (j =
1 ∼ 4) as shown in Fig.1. The density of Rj

i is calcu-
lated as dj

i . As shown in Fig.1, a sub region Rcenter
i

that has the same size as Rj
i and centered at ri is ex-

tracted and its density is defined as dcenter
i . ri will be

partitioned if it satisfies:

dcenter
i ≤ dj

i , (3)

the partitioned cluster seeds will be iteratively split until
it reaches the fixed iteration. Then, K-means clustering
will be used to refine the shape and density of each clus-
ter seed Ri. Experimental results also show that this al-
gorithm is not limited to the normal distribution, it can

be applied to any compact data. Fig.2 shows the result
of division process on the simulated data. where 8 real
clusters exist and 32 cluster seeds are produced after the
division process.

partition

Figure 1. Illustration of division.
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Figure 2. Division of the simulated data.
A: input data; B: division result

2.2 Agglomeration Criterion

After the division process, the kernel of this work is
to detect the number and position of clusters by merg-
ing the cluster seeds according to the density distribu-
tion. The conventional density-based methods [5, 7, 9]
use the scale factor to find out the number of clusters.
Therefore, their performance heavily depends on the
manual selection of proper scale factor.

Since a valley must exist between two neighbor
peaks in the density histogram, we consider the gap
(whose density is about zero) between clusters as the
cluster boundary. Therefore, the cluster detection can
be converted into detecting the gaps among clusters.
On this consideration, merging two isolated clusters
will decrease the density of merged cluster. Therefore,
the cluster detection in this work can be performed by
checking the density changes before and after merging.

After finding out the reciprocal nearest neighbor R j

to each cluster seed Ri and its density dj , the density of



cluster Rnew will be defined as dnew, where Rnew =
Ri ∪ Rj . Like Case 1 in Fig.3, the two clusters will be
merged together, if they satisfy:

dnew ≥ argmin(di, dj), (4)

When all the cluster seeds have been checked, K-
means clustering is used to refine the cluster density as
well as get the new cluster center. This merging pro-
cess will be repeated until no more cluster seeds can be
merged. The initial position of clusters is obtained from
the cluster refinement by K-means clustering.
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Case 1 Case 2

Case 1: two clusters should be merged

Case 2: two clusters should not be merged

Figure 3. Illustration of agglomeration.

Fig.4 shows the performance of this agglomeration
process on the result of Fig.2. This process is stopped
at B when no clusters can be merged any more.
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Figure 4. Merge the divided clusters. A:
merge once; B: merge twice

3. Experiment

To confirm the effectiveness of the proposed algo-
rithm, we applied it to both the simulated data 1 and the
Berkeley dataset 2 for image segmentation.

1some data comes from the SPAETH dataset
2http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping

/segbench/

R 1-2 of Fig.5 show that the proposed algorithm
could correctly find the initial number and position of
clusters even some of them intersect with each other.

R,M 3 ∼ 5 show the comparative results of the pro-
posed algorithm and mean shift on image segmenta-
tion. In M 3 ∼ 5, mean shift algorithm 3 ran at the
default scale factor (hs, hr, M)=(7,6.5,20), and the cor-
responding detected cluster numbers are 362, 1291 and
1135. In contrast, the proposed algorithm could pro-
vide similar image segmentation result to mean shift,
but its cluster detection results are 29, 32, and 14 clus-
ters, which is more reasonable. That is because, in mean
shift algorithm, the pair of neighbor clusters are merged
by checking the distance between them with the se-
lected scale factor, when the distance between clusters
is larger than scale factor, such clusters will be merged,
otherwise will be kept isolated. Therefore, it is very
possible that the single cluster with large variance may
be forcibly split by the small scale factor, and two iso-
lated clusters may be wrongly merged by a large scale
factor.

Because the proposed algorithm used the density
changes before and after merging to determine if the
pair of neighbor clusters should be really merged or not,
it became invariant to the scale factor. When the param-
eter of mean shift is changed to get similar cluster detec-
tion result to our algorithm (shown in ML3∼5 of Fig.5),
the detected numbers of clusters are 30, 37 and 44 clus-
ters, but the image segmentation result were degraded
because many isolated clusters were forcibly merged
by the large scale factors. The proposed algorithm was
directly applied to a 5D color-position feature space
which contained 320 × 480 × 2563 elements. The pro-
cessing speed of our algorithm is 13 seconds/frame with
a desktop of Intel C2D 2.66Ghz and 4GB memory.

4. Conclusion

In this paper, we brought out a scale-invariant
density-based clustering initialization algorithm. Ac-
cording to the density changes, a self propagate method
is brought out in this algorithm to produce the cluster
seeds at all the possible position. By defining the gap
between clusters as the cluster boundary whose density
is zero, the cluster detection can be achieved by check-
ing the density changes before and after merging two
RNN cluster seeds. Through experiments, this algo-
rithm can be used as the initialization method for clus-
tering, image segmentation, object tracking (like back-
ground subtraction), etc.
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Figure 5. Result of the simulated data and real image. S: source; R: result of our algorithm;
M: result of mean shift; ML: mean shift with large scale. In M 3 ∼ 5, (hs, hr, M )= (7,6.5,20).
Cluster detection result: R-3: 29 clusters; R-4: 32 clusters; R-5: 14 clusters; M-3:362 clus-
ters; M-4:1291 clusters; M-5: 1135 clusters. ML-3:(hs, hr, M )=(19,15,20), 30 clusters; ML-4:
(hs, hr, M )=(31,26,20), 37 clusters; ML-5: (hs, hr, M )=(39,32,20), 44 clusters.
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