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Shape acquisition of moving deformable objects with little texture is impor-
tant for applications such as motion capture of human facial expression. Several
techniques using structured light have been proposed. These techniques can be
largely categorized into two main types. The first type temporally encodes posi-
tional information of a projector’s pixels using multiple projected patterns, and
the second spatially encodes positional information into areas or color spaces.
Although the former technique allows dense reconstruction with a sufficient
number of patterns, it has difficulty in scanning objects in rapid motion. The
latter technique uses only a single pattern, so it is more suitable for capturing
dynamic scenes ; however, it often uses complex patterns with various colors,
which are susceptible to noise, pattern discontinuity caused by edges, or tex-
tures. Thus, achieving dense and stable 3D acquisition for fast-moving and de-
formable objects remains an open problem. We propose a technique to achieve
dense shape reconstruction that requires only a single-frame image of a grid
pattern based on coplanarity constraints. With our technique, positional infor-
mation is not encoded in local regions of a projected pattern, but is distributed
over the entire grid pattern, which results in robust image processing and 3D
reconstruction. The technique also has the advantage of low computational
cost due to its efficient formulation.

1. Introduction

Dense and accurate 3D scanning of dynamic objects, such as human facial
expressions, or robust 3D scanning of dynamic scenes with moving sensors, such
as autonomous robots’ vision systems, are essential for many applications. Since
passive stereo techniques have difficulty in reconstructing textureless surfaces
densely and accurately, active 3D measurement techniques, especially those using
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high-speed structured light systems, have been extensively studied in recent years.
Many structured light systems temporally encode positional information about

a projector’s pixel into multiple patterns. Recently, structured light systems that
can capture a dynamic scene have been proposed 6),19). These systems work by
reducing the required number of patterns and increasing pattern speed. However,
they assume that there is little motion in a scene while a sufficient number of
patterns are projected and that target objects are rigid bodies. In addition, the
design of high-speed synchronization systems is also an issue.

On the other hand, ‘one-shot’ structured light techniques using only a sin-
gle image in which positional information of the projectors’ pixels is embedded
into spatial patterns of the projected image have also been studied 8),13),15),17).
Although these techniques can resolve the issues of rapid motion and synchro-
nization, they typically use complex patterns of intensities or colors to encode
positional information into local areas. Because of the complex patterns, as-
sumptions of a smooth surface or almost uniform reflectance are often required,
and the image processing tends to be difficult in practical case: if the assumptions
do not hold, the decoding process may lead to unstable reconstruction.

In this paper, we present a single-image scanning technique resolving the afore-
mentioned problems. The proposed technique uses a simple grid pattern formed
by a number of straight lines distinguishable only as vertical or horizontal lines
so that image processing is simple and stable. In addition, there is no need to
encode particular information about the local grid pattern itself, so the pattern
can be dense as long as the lines are extractable. In the framework of coded
structured light, a shape cannot be reconstructed from such a pattern. Thus, a
new technique that reconstructs the grid pattern using coplanarity constraints
is proposed. The technique simultaneously decodes positional information of all
the grid points that are connected by using constraints on coplanarity obtained
from the detected positions of the grid points and the connectivity between them.
Our method has several features which are important for real-world applications
as follows. Since the technique requires only local information of connectivity
between adjacent grid points, the shape can be restored even when there are
abrupt changes in depth due to an occlusion or in color due to texture. It also
has an efficient formulation which decreases computational cost.
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140 Dynamic scene shape reconstruction using a single structured light pattern

This paper is organized as follows. Related work is discussed in Section 2, and
the basic theory of shape reconstruction from a single grid pattern is described in
Section 3. In Section 4, details for pattern configuration and techniques for the
detection of projected patterns from captured images are described. The exper-
imental results and evaluations are presented in Section 5. Finally, a discussion
of the results concludes the paper.

2. Related Work

Shape reconstruction techniques that encode positional information of a pro-
jector into temporal or spatial changes in a projected pattern have been widely
investigated 1),19). Techniques using only temporal changes are easy to imple-
ment, accurate, dense and robust, so they are commonly used thus far 2),3),7).
Since this technique needs multiple patterns for decoding, it is not suitable for
high-speed capture.

Several methods for reducing the required number of patterns using both tem-
poral and spatial changes have been presented 6),19). Hall-Holt, et al. proposed
an enhanced method to eliminate the limitation of static scenes by tracking pro-
jected stripe boundaries and using the temporal and spatial coherence of the
scene for 3D reconstruction 6). However, the technique is still not suited to fast
moving objects. Young, et al. proposed an efficient method to reduce patterns
by using multiple cameras 19). Using multiple cameras is sometimes a problem
because synchronization is needed. Weise, et al. proposed a 3D scanning sys-
tem composed of three cameras and a DLP video projector. The method uses
a projector that had been specially modified to project multiple images with
phase-shift temporal coding at high frequencies, and they demonstrated the use
of phase-shift codes while correcting the distortion of the measured objects 18).

Techniques using only spatial encoding of a pattern allow scanning with only a
single-frame image 8),13),15). These typically use complex patterns or colors for the
decoding process and require assumptions of a smooth or continuous surface or
assumptions of uniform or smooth reflectance, either locally or globally. If such
assumptions do not hold true, which is usually the case in the real environments,
the decoding process of the patterns is easily affected and this leads to ambiguities
near depth or color discontinuities. Therefore, 3D reconstruction tends to be

unstable or fails in realistic situations.
Although it does not strictly involve a structured light system, methods for

shape reconstruction of dynamic objects by spatio-temporal stereo matching have
been proposed 4),20),21). With these techniques, a projector is only used to provide
a texture that changes over time. This allows a pair of stereo cameras to achieve
high-quality depth reconstructions. However, they still require several patterns
for identification and are not suitable for fast moving deformable objects. In
addition, the techniques require either spatial or temporal synchronization.

Proesmans, et al. used a single, black grid pattern for an active stereo sys-
tem 14). Using a white background, they captured textures simultaneously with
the scanning. Their technique assumes orthographical projection of the pattern,
so only a relative 3D shape within a continuous region can be obtained. Koninckx,
et al. have proposed a technique allowing dense shape reconstruction based on a
single image using a simple set of stripes 10),11). This was achieved by combining
dense unidentified stripes and several identified stripes. Their method depends
on relative numbering of the dense patterns, which assumes local smoothness
of the surface and may be disturbed by shape discontinuities and line detection
failures.

Furukawa, et al. used multiple images projected by an uncalibrated line laser to
construct simultaneous linear equations which are solved to reconstruct a scene or
shape 5),9). Such equations are derived from coplanar constraints of intersection
points between temporally accumulated projected lines.

In our method, a grid pattern is projected onto the target scene and simulta-
neous equations are constructed from the intersections of the lines on the grid
using the formulation of Furukawa, et al. The projected lines are identified by
solving the equations. In the proposed method, no initial identification of the
grid lines is required and the lines can be dense as long as they can be extracted
to acquire high-resolution shapes. In addition, since discrimination of just two
colors on a captured image is required, the image processing becomes robust and
stable. Unlike previous ‘one-shot’ structured light techniques, our technique does
not assume smoothness or uniform reflectance of surfaces and is robust against
local discontinuities of grid patterns. Thus, our method is more practical for real
applications.
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141 Dynamic scene shape reconstruction using a single structured light pattern

Fig. 1 Scanning system: (left) the system configuration, and (right) the definition of the
coordinates.

3. Theory of Shape Reconstruction from a Grid Pattern

3.1 System Configuration
The 3D measurement system consists of a camera and a projector as shown in

Fig. 1 (left). The camera and the projector are assumed to be calibrated (i.e., the
intrinsic parameters of the devices and their relative positions and orientations
are known). The projector pattern does not change, so no synchronization is
needed. A grid pattern of vertical and horizontal lines is projected onto the
scene and captured by the camera. The vertical and horizontal lines are assumed
to be distinguishable. One way to achieve this is by using different colors for the
vertical and horizontal lines and classifying them by color.

3.2 Problem Definition
A straight line on the projected grid defines a plane in 3D space. Planes defined

by a vertical line and a horizontal line are respectively termed a “Vertical Pattern
Plane” (VPP) and a “Horizontal Pattern Plane” (HPP).

The projector is assumed to have been calibrated. Thus, all parameters for
the VPPs and HPPs in 3D space are known. A VPP and a HPP with known
parameters are termed a “Calibrated VPP” (CVPP) and a “Calibrated HPP”
(CHPP), respectively. As is apparent, all the CVPPs share a common line Lv,
as shown in Fig. 1 (right). Note that this constraint is valid for any VPPs even if
those are not identified, and thus, it is used for the formulation in Sections 3.4
and 3.5.1. Similarly, all the CHPPs share a common line Lh. The intersection of
these two lines, Lv and Lh, corresponds to the optical center of the projector Op.

Fig. 2 CVPPs and UVPPs.

The point Op and the direction vectors for Lv and Lh are known by calibration.
A vertical line projected onto the scene produces an observable 3D curve on

the surface of the scene, and the curve is on the VPP defined by the line. In this
paper, the 3D curve is termed a “Vertical Pattern Curve” (VPC). A “Horizon-
tal Pattern Curve” (HPC) is defined in the same way. Intersections between the
VPCs and HPCs are extracted from images captured by the camera. These points
are termed “captured intersections.” The intersections are connected by the
VPCs and HPCs and the connectivity is extracted by image processing (Fig. 2).
Since the correspondence from each VPC detected in the image to a particular
CVPP is unknown, a VPP that contains a VPC is termed an “Unknown VPP”
(UVPP). An “Unknown HPP” (UHPP) is similarly defined. Note that CVPPs
and CHPPs are not related to observation, but are determined only from calibra-
tion data, whereas UVPPs and UHPPs are associated by a one-to-one mapping
to VPCs and HPCs that are observed in the image. Multiple UVPPs may be
generated from a single projected line of the grid: for example, when the pro-
jected line is observed as multiple VPCs because of disconnections caused by
noise, occlusion, or shape discontinuities.

The goal of the problem is to determine correspondences between the UVPPs
(UHPPs) and CVPPs (CHPPs) (otherwise described as identifying UVPPs and
UHPPs). As a result, 3D positions of all the captured intersections become
known. Multiple UVPPs may correspond to a single CVPP if they are generated
from a single projected line as mentioned above. The same assumption holds for
UHPPs as well.

A set of intersection points that are connected by VPCs or HPCs are termed
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142 Dynamic scene shape reconstruction using a single structured light pattern

Fig. 3 Linked sets of captured intersections: (left) an example of a linked set, and (right) an
example of a linked set that include discontinuity of the pattern.

“a linked set”. A linked set can include discontinuities between adjacent grid
points as long as the two points are connected by multiple VPCs and HPCs as
shown in Fig. 3. All the captured intersections are divided into multiple linked
sets (e.g., two linked sets can be seen in Fig. 3 (left)). In the proposed method,
the target set of intersections is assumed to be contained in the same linked set.
When there are multiple linked sets, each can be reconstructed using the same
technique, so this assumption does not restrict the generality of the solution.

3.3 Outline of the Solution
Figure 4 shows an outline of the reconstruction processes of the proposed

method. First, 2D sets of VPCs and HPCs are extracted from the image. As
described in the previous section, UVPPs (or UHPPs) are associated to VPCs
(or HPCs) by a one-to-one mapping. Thus, a UVPP is prepared for each VPC.
UHPPs are prepared in the same way. Captured intersections are obtained by
extracting intersection points between VPCs and HPCs, and simultaneous linear
equations of UVPPs and UHPPs are obtained from these intersections. As will
be shown in Section 3.4, the solution of UVPPs and UHPPs that are obtained
by solving the linear equations has a one degree of freedom (1-DOF) indetermi-
nacy. This indeterminacy can be resolved by matching the solution of UVPPs
and UHPPs with the set of CVPPs and CHPPs obtained from the calibration
parameters. By applying triangulation to the unique solution of UVPPs and
UHPPs, 3D reconstruction of VPCs and HPCs is achieved.

The method for generating the simultaneous linear equations of UVPPs and

Fig. 4 Outline of the solution.

UHPPs will be described in the following sections. As preparation for it, we
first define symbols for UVPPs, UHPPs, CVPPs, CHPPs and the relationships
between them. Let the M CVPPs obtained by calibration be represented as
V1, V2, · · · , VM , and let the N CHPPs be represented as H1,H2, · · · ,HN . Also,
let the m UVPPs and n UHPPs obtained from the captured image be represented
as v1, v2, · · · , vm and h1, h2, · · · , hn, respectively. As noted in Section 3.3, a single
vertical line projected may be detected as multiple VPCs. Thus, m (or n) may
be greater than M (or N).

The proposed method derives linear equations based on conditions of copla-
narity with regard to UVPPs and UHPPs; that is, a captured intersection pro-
vides a linear constraint equation with regard to the UVPP or UHPP that con-
tains it. In addition, all UVPPs should include Lv. Because of this, two linear
constraint equations are obtained with regard to each of the UVPPs and UHPPs.
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143 Dynamic scene shape reconstruction using a single structured light pattern

These equations form a system of linear equations and can be solved by exist-
ing methods, such as singular value decomposition (SVD). In the case that the
captured intersections are included in a linked set, this equation typically has a
single trivial solution and retains one degree of freedom; as it stands, it will not
yield a unique solution.

Determining the 1-DOF parameter for the solution of UVPPs and UHPPs is
achieved by a 1D optimization: we find the parameter that minimizes a target
function representing the errors between UVPPs/UHPPs and CVPPs/CHPPs.
Since minimization of a target function with a continuous parameter is not easy,
we discretize the parameter, and search for the optimum value from a finite set
of values. To discretize the parameter, we sample the parameters where a certain
UVPP (for example, v1) coincides with any of the CVPP (Vi for 1 ≤ i ≤ M).
This process will be described in Section 3.6.

3.4 Solving Coplanarity Constraints
In the rest of this paper, coordinates of vectors or points are given in the camera

coordinate system, whose origin is at the optical center of the camera. The x-axis
is directed toward the right of the camera, the y-axis is directed down, and z-axis
is directed toward the front.

From the intersections of the VPCs and HPCs obtained from the captured
image, linear equations can be derived. Suppose that the intersection between
vk and hl is captured and its 2D position on the image in the coordinates of the
normalized camera is uk,l = [sk,l, tk,l]�. We assume that no planes include the
optical center of the camera. Then, planes vk and hl are represented by

v�
k x = −1, h�

l x = −1, (1)
respectively, where 3D vectors vk and hk represent plane parameters and x rep-
resents an arbitrary point on the planes �1. Let the 3D location of intersection
uk,l be represented as xk,l. Then, xk,l can be represented using uk,l as

xk,l = γk,l[u�
k,l 1]�, (2)

where γk,l is the depth value of the intersection. By eliminating xk,l and γk,l

�1 Generally, a plane with normal vector n and with signed distance d from the origin can be
represented by n�x = d. From this representation, Eq. (1) can be obtained by, for example,
defining vk ≡ −n/d. Note that d �= 0 because the plane does not include the origin.

Fig. 5 1-DOF indeterminacy similar to scaling ambiguity.

from Eqs. (1) and (2), we obtain
[u�

k,l 1] (vk − hl) = 0. (3)
In addition, vk contains line Lv which passes through the optical center Op of

the projector, as shown in Fig. 2. Let op be the 3D coordinates of Op and lv
be the direction vector of Lv. Then, since vk includes point Op and line Lv, all
the UVPPs vk pass through op, and their normal vectors are orthogonal to Lv.
Thus,

o�
p vk = −1, l�v vk = 0. (4)

Similarly, all the UVPPs hl pass through op, and their normal vectors are or-
thogonal to Lh. Thus, with the direction vector for Lh being lh, we have

o�
p hl = −1, l�h hl = 0. (5)

By putting Eqs. (3), (4) and (5) together, the system of linear equations
Pq = b (6)

where q = [v�
1 , · · · , v�

m, h�
1 , · · · , h�

n ]� is obtained.
If all the UVPPs and UHPPs coincide with the plane that contains both Lv and

Lh, the aforementioned linear equation holds. This trivial solution is denoted by
w. If we determine the depth of one captured intersection, the depths of all the
intersections connected to it can be found because connected intersections are on
a single plane. Thus, the general solution q of Eq. (6) has a 1-DOF indeterminacy
(see Fig. 5). Since w is a particular solution and q has 1-DOF indeterminacy,

q = w + pu, (7)
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where p is an arbitrary scalar value and u is a non-zero vector that satisfies
Pu = 0. There should be such a u if there is non-trivial solution q �= w.
Equation (7) can be confirmed to be a general solution because P(w + pu) =
Pw + pPu = 0 + p0 from the definitions of w and u. Here, w and u can be
calculated by SVD of P as follows. Using SVD, we can obtain the decomposi-
tion P = U diag(w1, w2, · · · , w3(m+n))V�, where U and V are matrices with
column vectors that are orthogonal to each other, and w1, w2, · · · , w3(m+n) are
the singular values sorted in decreasing order. From the SVD result, u in Eq. (7)
can be obtained as the right-most column of V, and a particular solution w is
given by w = V diag(1/w1, 1/w2, · · · , 1/w3(m+n)−1, 0)U�b.

3.5 Efficient Calculation by Reducing Variables
3.5.1 1-parameter Representation of Planes
The method for obtaining general solutions of planes v1, · · · , vm, and h1, · · · , hn

described in the previous section requires solving a linear Eq. (6) which has 3(m+
n) variables. If dense CVPPs (or either dense CHPPs) are used to increase
the density of the measured points, m or n may be a large number. Thus,
the computational complexity of reconstruction may become computationally
complex. In this section, techniques for reducing the number of variables in
Eq. (6) are described. By using these techniques, reconstruction can be achieved
with much less computational complexity.

First we describe a method for reducing 3(m + n) variables to m + n variables.
Let op be the optical center of the projector. Let p be the parameter vector of
the plane that passes through op and includes both Lv and Lh. Thus, planes vk

are elements of a pencil of planes that share Lv, where Lv is a line that passes
through op with direction vector lv. Then, the parameter vector vk of the plane
vk can be written as vk = ηv̄ + s, where η is a scalar value, v̄ ≡ lv × op, and
s is a parameter vector of an arbitrary element of the pencil of planes �1. This
parameter vector vk parameterizes the pencil of planes with a single variable η.
Similarly, hl can be written as hl = ρh̄ + t, where ρ is a scalar value, where h̄
is defined as h̄ ≡ lh × op, and t is a parameter vector of an arbitrary element of

�1 Note that Eq. (4) holds for such a plane, because o�
p (ηv̄ + s) = η{o�

p (lv × op)} + o�
p s =

η · 0 + (−1) = −1 (o�
p s = −1, since plane s includes point op) and l�v (ηv̄ + s) = η{l�v (lv ×

op)} + l�v s = η · 0 + 0 = 0 (l�v s = 0, since plane s includes Lv).

the pencil of planes that share Lh. Note that the pencil of planes that share Lv

and the pencil of planes that share Lh have a unique common plane, p, and the
vector p can be obtained from calibration. Thus, vk and hl can be given by the
1-parameter representations as

vk = ηkv̄ + p,hl = ρlh̄ + p. (8)
Let ũk,l be defined as ũk,l ≡ [u�

k,l 1]�. Then, from Eq. (3),

ũ�
k,l {(ηkv̄ + p) − (ρlh̄ + p)} = 0

⇔ (ũ�
k,l v̄)ηk − (ũ�

k,l h̄)ρl = 0. (9)

We define constants Fk,l ≡ ũ�
k,lv̄ and Gk,l ≡ ũ�

k,lh̄. Then, Eq. (9) can be
written as

Fk,lηk = Gk,lρl. (10)
By accumulating Eq. (10) for all the captured intersections, q simultaneous equa-
tions with (m + n) variables (variables are ηk, ρl, 1 ≤ k ≤ m, 1 ≤ l ≤ n) are
obtained, where q is the number of captured intersections.

Let t be the index of a captured intersection, and let ι(t) and κ(t) be the indices
of the vertical and horizontal planes that go through captured intersection t (e.g.,
if v3 and h4 cross at the 5-th captured intersection, ι(5) = 3 and κ(5) = 4 ). Let
T and R be a q × m matrix and a q × n matrix where their (r, c) elements Tr,c

and Rr,c are

Tr,c =

{
Fι(r),κ(r) if c = ι(r)

0 otherwise
, Rr,c =

{
Gι(r),κ(r) if c = κ(r)

0 otherwise
(11)

Then, by defining �η ≡ (η1, · · · , ηm)� and �ρ ≡ (ρ1, · · · , ηn)�, the simultaneous
Eq. (10) can be represented as

T�η = R�ρ. (12)
To solve Eq. (12) by the least squares method,

‖T�η − R�ρ‖2 =

∥∥∥∥∥[T| − R]

[
�η

�ρ

]∥∥∥∥∥ (13)

should be minimized. This can be achieved by calculating the eigenvector asso-
ciated with the minimum eigenvalue of the symmetric (m + n)× (m + n) matrix
[T| − R]�[T| − R]. There are efficient numerical algorithms for this problem.
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In this mathematical representation, the 1-DOF indeterminacy of the equations
corresponds to the scaling ambiguity of the eigenvector.

3.5.2 Reducing Variables from Dependency of Variables
It is possible to reduce the number of variables in Eq. (13) further. A least

squares solution is given by
min
�η,�ρ

‖T�η − R�ρ‖2 = min
�ρ

(min
�η

‖T�η − R�ρ‖2). (14)

The solution of min�η ‖T�η − R�ρ‖2 with a fixed �ρ is achieved when �η = T†R�ρ,

where T† ≡ (T�T)−1T� is a pseudo inverse of T.
The (r, c) element of T�T, which is described as (T�T)r,c, is

(T�T)r,c =
∑
w

T�
r,wTw,c =

∑
w

Tw,rTw,c. (15)

This means that (T�T)r,c is the inner product of the r-th column and the c-th
column of the matrix T. Since each row of T has only one non-zero element from
the definition of T, different columns of T are always orthogonal. Thus, T�T is
a diagonal matrix where

(T�T)r,c =

{ ∑
w(Tw,r)2 if r = c

0 otherwise
(16)

Thus, (T�T)−1 can be directly calculated and T† is obtained by simple multi-
plication.

Substituting �η = T†R�ρ into Eq. (14), we obtain

min
η,ρ

‖T�η − R�ρ‖2 = min
ρ

(
∥∥TT†R�ρ − R�ρ

∥∥2
) (17)

= min
ρ

(
∥∥(TT†R − R)�ρ

∥∥2
). (18)

This means that the optimal value of �ρ, which we denote by ρ̂, can be calculated
as a unit eigenvector associated with the minimum eigenvalue of the matrix
(TT†R−R)�(TT†R−R). Then the optimal value η̂ is obtained by η̂ = T†Rρ̂.
Since (TT†R−R)�(TT†R−R) is a n×n symmetric matrix, the computational
complexity can be further reduced.

Let η̂i be the i-th component of the optimal solution vector η̂, and ρ̂j be the

j-th component of ρ̂. Then, the general solution of UVPPs and UHPPs is
vk(λ) ≡ λη̂kv̄ + p, hl(λ) ≡ λρ̂lh̄ + p, (19)

where λ is the parameter for the 1-DOF indeterminacy.
3.6 Resolving the 1-DOF Ambiguity
The general solution of UVPPs and UHPPs in Eq. (19) includes an unknown

scalar λ. The scalar λ can be determined by matching the UHPPs (or UVPPs)
with the parameter λ to the CHPPs (or CVPPs) which are known from the
calibration data. Comparisons are made between UVPPs vk(λ) and CVPPs
Vi and also between UHPPs hl(λ) and CHPPs Hj , where Vi and Hj are the
parameter vectors of CVPPs and CHPPs. In this paper, the comparison is based
on the squared angles between the planes. More specifically, the error function
is defined as

E(λ) ≡
m∑

k=1

min
i=1,...,M

{D(vk(λ),Vi)}2 +
n∑

l=1

min
j=1,...,N

{D(hl(λ),Hj)}2, (20)

where

D(vk,Vi) ≡ arccos
(

vk · Vi

||vk|| ||Vi||
)

(21)

is the angle between two planes, vk and Vi. Then, the optimal value of λ is given
by

λ∗ ≡ arg min
λ

E(λ). (22)
Then, the set of planes vk(λ∗), (k = 1, 2, ...,m) and hl(λ∗), (l = 1, 2, ..., n) is
the solution.

The error function (20) represents the differences between the entire set of
CVPPs (or CHPPs) and the set of UVPPs (or UHPPs) reconstructed from the
captured intersections. Thus, the proposed method uses information of the loca-
tions of all the CVPPs and CHPPs simultaneously to resolve the ambiguity in
the coplanarity constraints.

To reduce the search domain of Eq. (22), we assume that the UVPPs must
match to the CVPPs. Based on this assumption, a predefined UVPP that is
selected in advance (a simple selection method is using the first UVPP v1(λ∗))
should coincide with one of the CVPPs for the optimum solution with the pa-

IPSJ Transactions on Computer Vision and Applications Vol. 1 139–157 (Sep. 2009) c© 2009 Information Processing Society of Japan



146 Dynamic scene shape reconstruction using a single structured light pattern

rameter λ∗. More specifically, if the first UVPP v1(λ∗) coincides with the i-th
CVPP Vi, the following constraint should be satisfied.

Vi = v1 = λ(1, i) η̃1v̄ + p, (23)
where λ(k, i) is defined as the value of λ when UVPP v1(λ∗) coincides with CVPP
Vi. Thus, λ(1, i) can be calculated from λ(1, i) = ||Vi − p||/||η̃1v̄||.

If the assumption described above is satisfied, λ∗ should be an element of
the set {λ(1, i)|1 ≤ i ≤ M}. So, λ∗ can be found by searching for the λ(1, i)
that gives the minimum value of Eq. (22) with respect to 1 ≤ i ≤ M . Thus,
λ∗ = arg min1≤i≤M E(λ(1, i)).

Theoretically, if there are no observation errors, the proposed method can re-
construct a linked set that consists of only a single intersection generated by a
UVPP and a UHPP (the case of m = n = 1). This extreme case is equivalent to
identifying the intersection using epipolar constraints. In actual cases, however,
reconstruction with only a single intersection may become unstable because of
noise and dense grid patterns. By using multiple UVPPs and UHPPs, tolerance
to noise improves because more information is used in the error function (20).

4. Configuration and Detection of the Grid Pattern

4.1 Configuration of the Grid Pattern
As described in Section 3.6, the stability of the search for λ∗ is affected by

the locations of CVPPs and CHPPs. If the error function (20) has a unique
minimum value at the true solution, the correct solution is obtained by the search
for λ∗. However, if the function has multiple minimum values, the search may
fail. Fortunately, the cases of multiple minimum values (e.g., the projector and
the camera are parallel, the pattern is a square and uniform grid, and the optical
center of the projector is on the line of x = y, z = 0 in the camera coordinates)
seldom happen in real situations and the search normally succeeds.

Another problem is that error values near the minimum value are not usually
significantly different from the minimum value and it is difficult to search for the
true solution due to the presence of noise. A simple way to prevent this is by
placing the CVPPs and CHPPs at irregular intervals on the projector’s image
plane. By doing this, the irregularity makes the minimum value of the energy
function more distinguishable from other minimal values.

Fig. 6 Example of (left) a projected pattern and (right) detected HPCs and VPCs. In the
right figure, red curves are HPCs, green curves are VPCs, and intersection points are
blue dots.

To achieve a more robust search, a sparse pattern is preferable, whereas dense
patterns are required for a detailed scan of an object. Therefore, it is difficult to
satisfy both requirements at the same time. One effective solution is to combine
patterns of dense vertical lines with uniform intervals and horizontal lines with
irregular intervals. Random intervals are used in this paper (Fig. 6 (left)).

In terms of pattern, any kind of pattern that consists of vertical and horizon-
tal lines can be a candidate: e.g., stripe patterns or checkerboard patterns. In
our implementation, we adopt stripe patterns for simplicity. Vertical and hor-
izontal stripes are colored red and blue, respectively, so that they were easily
distinguishable.

Sub-pixel accuracy for the line detection is needed to obtain results with suffi-
cient accuracy. We used peak detection with parabolic fitting. The stability and
simplicity of the peak detection algorithm is another reason for adopting stripe
patterns for our method (a checkerboard pattern requires an edge detection al-
gorithm and it is not as stable as peak detection).

Note that our method does not directly encode information into the patterns,
but uses their connectivity, and so complicated encoding patterns, like a Debruijn
sequence 8), are not required. Because of these features, this method is less af-
fected by distortion due to surface texture and object shape, resulting in robust
and stable 3D reconstruction with simple image processing.

4.2 Detection of Grid Pattern
To project a grid pattern, we usually use a video projector as a light source.
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Since the intensity of the light is relatively weak compared to strong light sources
like lasers or special projectors, simple thresholding techniques sometimes fail.
Therefore, we implemented a curve extraction algorithm based on peak detection
to increase robustness.

First, the captured image is scanned horizontally and vertically, detecting
VPCs and HPCs, respectively, with sub-pixel accuracy using the peak detec-
tion algorithm. For example, red VPCs are detected by horizontal scanning
of an image. The intensity profiles in the red-channel of a single row of the
pixels are examined and a sub-sequence of the signal where the intensity mono-
tonically increases first and then monotonically decreases is extracted. Let the
intensity profile of the j-th row be fr(i, j), (i = 0, 1, 2, · · · ) and let the pixel
position of the maximum intensity be (ip, j). If there exist integers k, l where
f(ip, j)−f(ip−k, j) ≥ Cf ,1 ≤ k ≤ Cw and f(ip, j)−f(ip + l, j) ≥ Cf ,1 ≤ l ≤ Cw

(Cf is the threshold of the minimum gradient of the steeps of the peaks and Cw

is the threshold about the maximum width of the peaks), then (ip, j) is detected
as a peak position at pixel-accuracy. The peak position at sub-pixel accuracy
is calculated as the maximum position of the quadratic function that includes
f(ip−1, j), f(ip, j) and f(ip +1, j). Detected peaks of the j-th row are compared
with peaks of j − 1-th row, and if the distance to the nearest peak is smaller
than a threshold, they are connected to form a VPC. Isolated peaks are then
removed. In our experiments, this simple technique worked sufficiently well to
retrieve satisfactory results. However, many line detection algorithms have al-
ready been proposed and may be used to obtain better results. Figure 6 (right)
shows example of detected lines and intersection points.

In processing real images, several types of errors in pattern detection may occur.
One of these is disconnection of detected VPCs or HPCs. This type of error is
not a serious problem because the solution of the linear Eq. (6) remains the same
as long as the intersections configure the same linked set.

Other types of incorrect connection of multiple VPCs (or HPCs) or incorrect
detection of intersections changes the solution of the linear equation. If both of
the wrongly connected lines are included in a single linked set, a false constraint
is added to the system of simultaneous linear equations. Since the system of
linear equations is normally over-constrained, our method is robust against this

type of error.
When two different linked sets become wrongly connected, a major change in

the result may occur. If one linked set is much larger than the other, the larger
set tends to be reconstructed correctly whereas smaller set becomes distorted by
a generalized projective bas-relief (GPBR) transformation 12), because the larger
set dominates calculation of the error function. If both sets are about the same
size, both reconstructed sets may be distorted.

The only requirements that should be achieved in the image processing step
of the proposed method, is the extraction of the grid lines that are labeled as
vertical or horizontal lines. This simplicity is a huge advantage for achieving
robust image processing. In an experiment, which will be described in Section 5.4,
a successful reconstruction of textured objects was demonstrated.

4.3 Dense Reconstruction with Coarse-to-fine Technique
The frequency of the projected pattern is another problem. If we want to

capture the shape more densely, a higher frequency pattern is required. However,
if we set the frequency higher than the image resolution, the correct pattern can
not be captured because a number of lines merge into a single segment on the
image and the shape can not be recovered correctly. Moreover, the ideal frequency
of the projected pattern may be different depending on the location of the scene.
For example, even if the frequency is ideal for the front face of the cylindrical
shape, the frequency may become too high near the occluding boundary of the
object, which may result in failure of reconstruction.

In this paper, we propose the following simple method to solve the problem
as follows. We have already used two colors for identification of vertical and
horizontal lines. Therefore, we use additional colors for different frequencies.
In our implementation, we used only three colors for robust image processing.
Therefore we project lines at two different frequencies (e.g., dense and sparse
patterns) only for vertical lines. Figure 7 shows an example pattern, detected
lines and intersection points. In the figure, we can see that both of the patterns
were correctly detected. To merge the shapes of two patterns, we can simply
add all the recovered points. More intelligent methods can be applied to improve
results for merging.
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Fig. 7 A pattern for coarse to fine technique. (top) a projected pattern, (bottom left), detected
coarse lines and (bottom right) detected fine lines. In the bottom figures, green curves
are horizontal patterns, red curves are vertical, and intersection points are blue dots.

5. Experiments

5.1 Evaluation of Accuracy and Robustness Using Simulation Data
Several experiments were conducted to test the proposed method.
The first experiment confirmed the validity of the proposed method using sim-

ulated data. Several grid patterns were provided to synthesize simulated images.
The first grid consists of a complete set of lines aligned at uniform intervals. The
second is the same as the first, except that the intervals of the horizontal lines
are randomized to disturb the uniformity of the grid pattern. This increases the
stability of the determination of correspondences, as described in Section 4.1.
The synthesized camera images of the grid patterns are shown in Fig. 8. In the
images, the intervals of the VPCs are about 5 pixels. The intersections of the
grid patterns were extracted from the images and the correspondences from the
UHPPs and UVPPs to the CVPPs and CHPPs were determined using the pro-
posed method. For both patterns, the correct correspondences for all the UHPPs
and UVPPs were selected and the reconstructed shapes exactly matched the
ground truth. The shape obtained from the data of irregular (random) intervals

Fig. 8 Synthesized grid patterns: (left) uniform intervals and (right) irregular (randomized)
intervals.

Fig. 9 Result of simulation data with irregular (randomized) intervals. The red points are
reconstructed points and the shaded surface is the ground truth.

is shown in Fig. 9 together with the ground truth.
The processing time for reconstructing the input data created using the pattern

with randomized intervals on a PC with a 3.8 GHz Xeon CPU was about 1.6 sec.
Almost all of the time was spent for the SVD calculation. Once w and u of
Eq. (7) had been obtained from the SVD result, the minimum value search took
less than 0.001 s.

Another experiment was conducted to evaluate the stability of the proposed
method when the input data (the set of captured intersections) were disturbed
by noise. Since the stability of the proposed method depends on the projected
pattern, the two types of patterns shown in Fig. 8 were used and isotropic 2D
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Fig. 10 Error ratios with different noise levels.

Gaussian noise was added to the captured intersections. The proposed method
was applied to data with various noise levels (noise levels were defined by the
standard deviation of the noise measured in pixels), and 20 tests were conducted
at each noise levels. For each test, correctness of the reconstruction was decided
by whether the first UVPP of the solution (v1(λ∗)) was associated to the correct
CVPP or not. The ratio of correct reconstructions out of the 20 cases at each
level is shown in Fig. 10. The results confirmed that stability of the algorithm
was improved using the pattern with irregular (random) intervals.

5.2 Evaluation of the Effect of Reducing Variables
In Section 3.5, a technique for reducing computational complexity by con-

structing linear equations with fewer variables is described. We conducted an
experiment to demonstrate the effectiveness of this technique.

An actual 3D scanning system was built as shown in Fig. 11. Patterns were
projected with a resolution of 1,024×768 pixels and scenes were captured by a
CCD camera (720×480 pixels). Figure 12 (a) shows the target object (a paper
mask) used in this experiment. The target object was captured by the proposed
system and its 3D shape was reconstructed by the following three methods: the
method of Section 3.4 that uses 3(m + n) variables (method A); the method
of Section 3.5.1 that uses m + n variables (method B); and the method of Sec-
tion 3.5.2 that uses n variables (method C). Then, the processing performances
for the methods were compared.

Processing was performed by a PC with a 2.5 GHz Xeon CPU and 2 GB main

Fig. 11 Real 3D Scanning System.

(a) (b) (c)

(d) (e) (f)

Fig. 12 Target object and reconstruction results: (a) the target objects, (b)-(d)
reconstructed shape and (e), (f) textured shape after hole-filling.
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memory. Other conditions such as dimension of the image were the same as the
previous experiment. The number of the detected vertical lines (i.e., m) was 812,
and the number of horizontal lines (n) was 142. The shape acquired by method
C is shown in Figs. 12 (b)–(f). We confirmed that the results of three methods
were identical.

In Figs. 12 (b)–(d), we can see noticeable traces on the results. This is mainly
because of small errors in the normal vectors of points used for point shading.
In our system, normal vectors are calculated using neighboring points. Since
the proposed technique reconstructs shapes based on stripes, the density for the
direction of stripes is very high, while the density for the orthogonal direction is
not so high. Thus, if the kernel for normal calculation is isotropic, the accuracies
of the normals for the former and the latter directions are different. This produces
visual effects along the vertical direction.

The execution times were 104 seconds for method A (2,862 variables), 3.5 sec-
onds for method B (954 variables), and 0.0035 seconds for method C (142 vari-
ables). The number of variables of the linear equations was reduced by a factor
of about 20 for method C compared to method A, whereas the execution time
was reduced by a factor of about 30,000. This is because the computational com-
plexity of calculating eigenvectors scales much more quickly than linearly with
respect to the dimension of the matrix. This experiment demonstrated that the
method of variable reduction is very effective in reducing the computational cost
of reconstruction.

5.3 Evaluation of the Coarse-to-fine Technique
Next, a scene of a box (size: 0.4 m × 0.3 m × 0.3 m) and a cylinder (height:

0.2 m, diameter: 0.2 m) was measured to test the coarse-to-fine method using
the pattern proposed in Section 4.3. The scene was also measured by an active
measurement method using coded structured light 16) to establish the ground
truth. Figure 13 (a) shows the original captured scene while (b) and (c) show
the captured images where objects are projected with the proposed pattern.
Figs. 13 (d) to (f) show the detected curves and (g) and (h) show the intersections
of horizontal and vertical curves for the coarse and fine pattern, respectively.
Figure 13 (k) shows the merged points of sparse (i) and dense reconstruction (j),
and Figs. (l) to (n) show both the reconstruction (red and green points) and the

(a) Target object (b)Captured scene (c) zoom-up (d)Horizontal line

(e) Vertical line(dense) (f)Vertical line(sparse) (g) Intersection(dense) (h) Intersection(sparse)

(i) Reconstruction of dense
pattern

(j) Reconstruction of
sparse pattern

(k) Merged data

(l) (m) (n)
Fig. 13 Reconstruction and evaluation results: (a) captured scene, (b)(c) objects projected by

the coarse-to-fine pattern, (d)-(f) detected curves, (g)(h) intersections of horizontal
and vertical curves, (i)-(k) reconstruction results, and (l)-(n) the reconstructed model
displayed with the ground truth data (red and green points: reconstructed model and
shaded model: ground truth).
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ground truth (polygon mesh). Figure 13 (e) shows an example of line detection
with the dense pattern, where the detection failed around the right side of the
cylinder because the density exceeds the limit of detection. On the other hand,
in (f), detection succeeded in the same region. Detection of intersections of
the lines (g) and reconstruction (i) failed for the right side of the shape with
the dense pattern, whereas detection of intersections (h) and reconstruction (j)
succeeded using the sparse pattern. However, density of the reconstructed points
of the sparse pattern is low on the left side, which can be seen from figure (j).
By combining all these results, the entire cylinder shape could be reconstructed
with sufficiently high density as shown in figure (k). Although there were small
differences between the reconstruction and the ground truth, the correct shape
was densely and accurately restored. The RMS error of the reconstruction from
the ground truth was 0.52 mm, where the minimum and maximum coordinates
of the bounding box of the measured data were (−200 mm, −190 mm, 660 mm)
and (110 mm, 160 mm, 880 mm).

Another experiment for demonstrating the effects of the coarse-to-fine approach
was conducted. The results (Fig. 14) show that the reconstruction using the
sparse pattern works better for the left side of the column in the scene, whereas
the dense pattern works better for the front face. We see that, by combining
results from both patterns, shapes that have faces with various directions can be
reconstructed with high accuracy and density.

5.4 Evaluation of Line Detection
Line detection performances were evaluated for the cases that (1) the grid pat-

tern was blurred and that (2) the target object has a complex texture. Figure 15
shows the results for case (1). Figure 15 (b) shows an image that was defocused
by about 30 cm, where the fine patterns were not detected on the front side and
only the coarse pattens were detected and reconstructed. Figure 15 (e) shows
an image defocused by about 50 cm, where all the patterns on the front side
could not be detected and reconstruction just failed. However, for the left side
of the object, reconstruction was succeeded because the defocused pattern was
sharpened by the tilted plane.

Figure 16 shows the results for case (2), where an object with many colors
and patterns was scanned. Although the object had a complex texture with

(a) Target object (b) Captured scene (c) zoom-up

(d) Reconstructed
coarse pattern

(e) Reconstructed
dense pattern

(f) Merged result (g) Merged result
from another view

Fig. 14 Reconstruction results of coarse to fine technique: (a) captured scene, (b)(c) objects
projected by the coarse-to-fine pattern, (d) reconstructed shape from coarse (sparse)
pattern, (e) reconstructed shape from fine (dense) pattern, (f) and (g) merged results.

many colors, the reconstruction succeeded. This shows that robust line detection
was achieved even with a simple peak-detection algorithm, since only three colors
(green for horizontal lines, red for coarse vertical lines, and blue for dense vertical
lines) were used in the projected pattern.

In these experiments, curve detection was stable and no significant errors ap-
peared if the scanning environment was not bright and the light intensity of the
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(a) Basic pattern (b) Defocus 30 cm (c) Reconstruction result

(a) Basic pattern (b) Defocus 50 cm (c) Reconstruction result

Fig. 15 Reconstruction results of defocused patterns.

projector was high enough. However, if the environment was bright, the light in-
tensity of the projector was low or the object was dark, curve detection became
unstable and led to erroneous reconstruction. Using lasers or an infrared would
be a simple solution.

5.5 Real Data Results
To demonstrate our technique, we scanned several types of objects with a

real time system. We can reconstruct 3D shapes with an average 1.16 fps for a
1024×768 resolution camera. This is composed of 0.58 seconds for image capture,
0.22 seconds for reconstruction, and 0.07 seconds for rendering.

First, we scanned static objects which have abrupt depth and color changes.
Figure 17 shows the captured scenes and results of reconstruction. In the ex-
periment, a ceramic bottle, a paper mask and a ceramic jug with intricate shapes
and textures were captured. As is apparent, detailed shapes were successfully re-
covered with the current method. Unlike previous one-shot methods 8),10),13),15),
the proposed technique achieves reconstruction even if jump edges and abrupt
color changes exist so that lines are frequently segmented. In the results, we can
see noticeable traces — as in Fig. 12, and for the same reason.

(a) Target object (b) Zoom-up view (c) Detected lines

(d) Reconstruction result (e) Reconstruction result
from another view

(f) Target object (g) Captured scene

(d) Reconstruction result (e) (f) Reconstruction
result from other
views

Fig. 16 Reconstruction results of textured objects.
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(a) (b)

(c) (d) (e)

(f) (g) (h)

Fig. 17 Reconstruction results of static objects: (a)(f) the target objects, (b) close-up view
of reconstructed shape of (a), and (c)(d)(e)(g) reconstructed shape.

Next, dynamic scene reconstruction was conducted with a human face as the
target object. The target scene was captured to obtain a series of images while
the face was being moved and facial expressions changed freely. Figure 18 shows
sample captured scenes and the results of reconstruction. The proposed method
successfully restored the human facial expressions with dense and accurate 3D
point clouds. In the results, we can see noisy traces that are more significant

(a) (b)

(c) (d) (e)

(f) (g) (h)

(i) (j) (k)

Fig. 18 Reconstruction of facial expressions: (a) a capturing scene, (b) the captured frames,
(c)-(e) facial expression 1 (normal), (f)-(h) facial expression 2 (puffing up cheeks) and
(i)-(k) facial expression 3 (angry). Please carefully check the differences of the shape
between the eyebrows of (d) and (j).
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(a) (b)

(c) (d) (e)

(f) (g) (h)

Fig. 19 Reconstruction of a fast rotating fan: (a) target object, (b) the captured frames with
shutter speed 1/1000, (c) the captured frames with shutter speed 1/2400 (d) the
captured frames with shutter speed 1/2550, (e) linked sets of detected curves (shown
by colors), and (f) to (h) reconstructed shapes.

than those in Fig. 12 and Fig. 17. We think that the main reason for the noise is
because human faces have complicated reflectance properties such as non-uniform
reflectance and subsurface scattering effects. Note that although there was a lot
of noise, the overall shape is successfully reconstructed because the proposed

(a) (b) (c)

(d) (e) (f)

Fig. 20 Reconstruction of a rotating fan from images affected by motion blur: (a)-(c) captured
image (shutter speeds are 1/2000, 1/800, and 1/250, respectively), (d)-(f) reconstruc-
tion results (shutter speeds are the same as (a)-(c)).

method has a large tolerance for image processing errors (which is an advantage
of the method).

Finally, to show the strength of a one-shot scanning method compared to a
multi-frame scanning method, extremely fast motion was captured using a rotat-
ing fan as the target object. The target scene was captured with various shutter
speeds as shown in Figs. 19 (b) to (d). In this case, only the fastest shutter speed
(Fig. 19 (d)) can capture the grid pattern with almost no motion blur, and we
conducted the reconstruction using that image. Figure 19 (e) shows the linked
sets of detected curves of patterns, and Figs. 19 (f) to (h) show the results of
reconstruction. The proposed method successfully restored the shape despite its
extremely fast motion.

We also show the reconstruction result of the same fan with images affected by
motion blur, captured with several different shutter speeds. Figure 20 shows
the results. In the results, as the exposure time becomes long, the image becomes
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more affected by motion blur and the reconstruction result becomes worse.

6. Conclusions

This paper proposes a technique to densely measure shapes of both static and
dynamic objects using a single projection of grid pattern. The proposed tech-
nique does not involve encoding positional information into multiple pixels or
color spaces, as often used in conventional ‘one-shot’ 3D measurement meth-
ods. Instead, the technique reconstructs the shape only from detected curves of
a grid pattern. More specifically, coplanarity constraints between the detected
grid points are used to obtain simultaneous equations, which can be solved up
to a 1-DOF indeterminacy. The remaining ambiguity can be resolved by using
known calibration data. The technique provides dense shape reconstruction even
when discontinuities or occlusions in the shape are present. In addition, since it
is necessary to distinguish only two types of patterns, such as vertical and hor-
izontal curves, reconstruction is affected little by an object’s texture, providing
robust shape reconstruction. Tests were carried out with simulated and real data,
confirming that the proposed technique accurately and stably reconstructed 3D
shapes with small computational cost.

Currently, simultaneous texture acquisition while continuously scanning dy-
namic scenes has not been implemented. Since the proposed method can be
applied by using only two colors for a projected pattern, those colors can be
easily replaced by infra-red spectra. Therefore, simultaneous texture acquisition
may be possible in the future.
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