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Abstract. Examination inside an intestine by an endoscope is difficult and time
consuming, because the whole image of the intestine cannot be taken at one time
due to the limited field of view. Thus, it is necessary to generate a dissection im-
age, which can be obtained by extending the image of an intestine. We acquire
an annular image sequence with an omnidirectional or wide-angle camera, and
then generate the dissection image by mosaicing the image sequence. Though
usual mosaicing techniques transform an image by perspective or affine trans-
formations, these are not suitable for our situation because the target object is a
generalized cylinder and the camera motion is unknown a priori. Therefore, we
propose a novel approach for image registration that deforms images by a two-
dimensional-polynomial function which parameters are estimated from optical
flow. We evaluated our method by registering annular image sequences and we
successfully generated dissection images, as presented in this paper.

1 Introduction

Examining a patient’s intestine using an endoscope is difficult and time consuming,
because the field of view of a camera is restricted and the doctor can only look at a
small part of the intestine at a time. It would be desirable for an easy-to-understand
view to be available for medical doctors. This is especially important when a lot of
data is involved, for example, when a doctor compares patients among those who have
similar symptom.

The most easy-to-understand way for an examination is to operate and cut open the
intestine for a view of the whole intestine, but it is impossible for many reasons. The
generation of images, which look like cut-and-expanded intestine, is required. Thus by
using this representation a doctor can examine the wide area of an intestine at a glance
without performing an operation. Videos that are taken by an endoscope can be used to
generate such images by utilizing an adapted video mosaicing technique.

A number of methods have been explored and proposed in the video mosaicing liter-
ature. S. Peleg and J. Herman [9] developed a panoramic mosaicing method using man-
ifold projection. Szeliski [13] developed an image-based video mosaicing method using
8-DOF projective image transformation parameters between pairs of input images. His
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Fig. 1. Omnidirectional and wide-angle cameras
inside an intestine

Fig. 2. The camera motion is unknown a priori
when examining inside an intestine

(a) Original image

(b) Projected image

Fig. 3. An image of intestine’s model taken by
endoscope

method can be used when a target is a plane (planar image mosaicing) or the opti-
cal centers of images are approximately fixed throughout the video capture (panorama
image mosaicing). Swaminathan and Nayar [12] developed a non-metric method for
calibrating wide-angle lenses and polycameras, seeking the distortion parameters that
would map the image curves to straight lines. But the method does not apply in our
objective because of the lack of straight lines in an intestine.

On the other hand, a number of non-rigid body registration methods have been pro-
posed in the field of medical image, for example, free-form deformation(FFD) [3], global
transformation using affine transformation and local transformation controlled by FFD
model based linear singular blending(LSB) B-spline [14], finite element
method (FEM) [6]. These methods work well only if the motion between two images
is small.

As mentioned earlier, existing methods make use of the knowledge of camera po-
sition or rigid-object shapes. However, the shape of intestine is non-rigid and an endo-
scopic image sequence contains large motions. Moreover, the trajectory of the camera
takes a meandering path as shown in Fig. 2, since the shape of the tube is not a sim-
ple cylinder. Therefore, a new image registration approach is required. In this paper, we
propose a novel method to generate a dissection image of an intestine from an image se-
quence, where the dissection image look like the image obtained by cutting the intestine
lengthwise and opening out its inside. And we also propose a novel deformable regis-
tration method for non-rigid object using the multiple variable polynomial functions
(two-dimensional-polynomial functions) which parameters are estimated from optical
flow.

The examination of an intestine by an endoscope can be considered as capturing a
sequence of images of the inside of a generalized cylinder (in this paper called a ”tube
object”) using a camera. Each image in the sequence captures a part of the tube, and
combining them will yield an image of the whole tube. We acquire an image sequence
of a tube using an omnidirectional or a wide-angle camera. These cameras have a large
field of view as shown in Fig. 1. Thus, they obtain the image of the inside wall of
a tube object. Fig. 3(a) shows an image captured by an endoscope; from this image,
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we utilize the annular area and apply an appropriate formula to obtain a stripe of a
dissection image, as shown in Fig. 3(b). After we obtain a sequence of parts of the
dissection images, we need to register and mosaic them to form a full dissection image
of the intestine. In this paper, our method accomplishes the deformable registration of
images by fitting a two-dimensional-polynomial function, which restricted by shape of
a generalized cylinder.

This paper is organized as follows. Section 2 gives an overview of our approach.
Section 3 explains our deformable registration. Section 4 presents our experimental
results. Finally section 5 summarizes our findings.

2 Generating a Dissection Image

In our approach, we take the annular images with a 360 degree view camera with no
information about the camera’s motion; however, we assume that the camera’s motion is
continuous, and the characteristic of the observed target is a smooth tube. Our approach
to mosaic the annular image sequence is a feature-based approach with steps as shown
below:

1. Detect optical flows
2. Project input image into panoramic image
3. Register the projected image
4. Mosaic the registered image

We detect the optical flows from our input image sequence, and then project the input
image into panoramic image. After that, we use the detected optical flow in our image
registration. Finally, we mosaic the transformed image into mosaicing image.

2.1 Computing Optical Flows and Estimating the Pose of the Camera

We compute optical flows by extracting and tracking feature points. Our method is
based on the KLT feature tracker [8] and the feature points are detected using [11].
Fig. 4 shows an example of the result of computing optical flows. Each feature point is
detected at the point where the texture changes steeply and the black lines depict the
vectors of optical flows.

After computing optical flows, we estimate the pose of the camera using optical
flows. The purpose is to reject the outliers of optical flows and cancel the rotation of
the camera before projecting the input image into a panoramic image coordinate. Our
method first estimates the epipolar geometry using 7 point matches [15] or 8 point
matches [7]. Next, we refine the solution by reprojecting the feature points using the
estimated parameters [10]. Since our method accomplishes a robust estimation with a
RANSAC approach [5], we can reject false optical flows as outliers.

Because the deformation of an input image, which is caused by the rotation of the
camera does not change according to the distance from the camera, an image without
deformation can be created by applying the inverse rotation to the input image. On the
other hand, the deformation by the translation of the camera cannot be easily restored
because it depends on the distance from the camera to the object viewed. We explain
the solution to this issue in section 3.
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Fig. 4. Detected optical flow (black lines)
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Fig. 5. Projection model of a hyper-omnidirec-
tional camera

2.2 Projection into Spherical Coordinates

The next step is to project an annular image into spherical coordinates. If we use cylin-
drical coordinates, the mapping function can diverge when the direction of the camera
changes. Thus, we use spherical coordinates. There are several ways to capture the
annular image, using an omnidirectional or a wide-angle camera. In this section, we
explain the method to generate a panoramic image in a spherical coordinate from the
image of a hyper-omnidirectional camera [4]. Even if we use a different type of camera,
we can generalize the image into spherical coordinate, which make the computation is
similar.

Figure 5 shows the projection model of a hyper-omnidirectional camera system.
Every ray point to the focal point of the hyperboloidal mirror through a point Sp(θ, φ)
on the spherical coordinates of the mirror. It reflects to the camera center through a point
up(x, y) in the annular image coordinates. Thus, we can project the annular image taken
by a hyper-omnidirectional camera into a unit sphere by the following computation:

β = arctan

(
−

((
b2 + c2

)
sin (φ · π/nh − π/2) − 2bc

)
− ((b2 − c2) cos (φ · π/nh − π/2))

)

r = f tan
(π

2
− β

)
x = cx + r cos

(
2θ

π

nw

)
(1)

y = cy + r sin
(

2θ
π

nw

)

where nw and nh are the width and height, respectively, of a projected image, a ,b and
c are the parameters of the hyperboloidal mirror, and (cx,cy) is the center of the annular
image. From these equations, we can project each pixel (x, y) of an annular image into
a point (θ, φ) of the spherical coordinates. A sample of a captured annular image is
shown in Fig 3(a), and Fig 3(b) shows the image after projecting.
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Registered image
n th frame Merged image

Mosaiced image
1st~(n-1) th frame

Fig. 6. Image mosaicing

2.3 Image Registration

The third step is image registration that determines the spatial transformation, which
maps points from one image to corresponding points on the second image, and trans-
forms the image from the determined map. Since our target object is a tube object, a
perspective or affine transformation is not suitable. Therefore, we propose deformable
registration by fitting a two dimensional polynomial function. The detail is described in
section 3.

2.4 Image Mosaicing

After image registration, the remaining operation is to merge the registration results
into the mosaic image. As Fig 6 shows the idea of merging a registered image from
the n-th frame on the left side of the figure into a mosaic image, which is created by
mosaicing from the first to the (n-1)-th images. We simply mosaic the registered images
by overwriting the new registered image on the mosaic image to make a new mosaic
image.

3 Deformable Image Registration by Polynomial Transformation

Most image mosaicing techniques transform images by perspective or affine transfor-
mations for registration. However, these transformations only work for images of sta-
tionary planar objects taken with a perspective camera. Since our images are annular
images taken by omnidirectionally with a wide-angle camera, and the target is a tube
object, these methods do not work. Therefore, we propose a novel approach for image
registration that deforms images by fitting two-dimensional-polynomial functions.

3.1 Model of Optical Flow

If we separate the motion vector to the components along the θ-axis and the φ-axis, we
can define the model of optical flows depending on θ and φ position of the optical flows;
because the object and the motion of the camera are constrained to a smooth tube and
continuous motion, respectively.

Motions Along θ-axis. Because the input image is an annular image sequence taken
from an omnidirectional or wide-angle camera, the motion vectors have periodicity
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Fig. 7. Detected optical flow (black lines) Fig. 8. Projection model of a hyper-
omnidirectional camera

along the θ-axis after projecting into a spherical coordinate. Because our target object
is a smooth tube, the θ-component of the motion vectors has 2 extrema as shown in
Fig 7, which shows the θ-component of motion vectors that are detected from an input
annular image sequence

When fitting this data into a polynomial function, since the data has periodicity
along θ-axis and is extracted from an annular image sequence, we use 2 cycles of the
data, as shown in Fig 8, to approximate the periodicity by a polynomial function. Thus,
the number of extrema is 4. If we use a polynomial function for fitting, the degree must
be at least 5.

If the object is a real cylinder and the camera moves minutely at the center of the
object along the θ-axis, the θ-component of the motion vectors becomes a sine function
∆θ = sin(θ), where ∆θ is the θ-component of a motion vector and θ is the position
of the optical flow. Even in other cases, for example, when the camera is not at the
center of the tube or where the tube is not a perfect cylinder, the function between θ
and ∆θ is similar to a sine function. Therefore, when we fit a polynomial function to
the data, the degree of the function is sufficient if we can fit the polynomial function to
a sine function. We empirically find that a 10-degree polynomial function is sufficient
for fitting the objects that we operate on in this paper with the function.

Motion Along φ-axis. The φ-component of the motion vectors, depend on the motion
along the φ-axis. Fig 9 shows the situation where the camera moves along the φ-axis.

If the distance between the camera origin O and the wall of tube is r and the camera
moves rC along the φ-axis, where C is an arbitrary constant, the positions of a feature
point satisfies

C = tan(φ) − tan(φ′) (2)

where φ and φ′ are the φ-positions of a feature point before and after the motion, re-
spectively. After algebraic manipulation, Eq. 2 becomes

tan(∆φ) =
2C(cos(2φ) − 1)
C sin(2φ) − 2

(3)

where ∆φ = φ′ − φ. Fig 10 shows the function of Eq.3 where −π/2 ≤ φ ≤ π/2 and
C = π/180. Since it has only an extremum, we can estimate this function by fitting a
second degree polynomial function.
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Fig. 9. Detected optical flow (black lines) Fig. 10. Projection model of a hyper-
omnidirectional camera

Fig. 11. Relation between φ position(φ) and φ-component(∆φ) of motion vectors

Fig 11 shows the φ-components of optical flows that are detected from an annular
image sequence captured by an omnidirectional camera. As described above, the func-
tion has an extremum. Thus, it can be approximated by a second degree polynomial
function. When we use a wide-angle camera, it cannot observe the lateral and back-
ward directions, in which φ is around or less than zero. Since the distribution of the
φ-components of optical flows are almost linear in such cases, we use a first degree
polynomial function for fitting.

3.2 Polynomial Transformation

From the model of optical flows described above, we approximate the distribution of
optical flows by a polynomial functions. By putting them together, we model the distri-
bution of optical flows by two-dimensional-polynomial functions as follows:

θnew =
n∑

i=0

m∑
j=0

C
[θ]
i,jθ

iφj (4)

φnew =
n∑

i=0

m∑
j=0

C
[φ]
i,j θiφj (5)

where θ and φ are the position of a feature point before the motion, θnew and φnew are
those after the motion, and C

[θ]
ij and C

[φ]
ij are the coefficients of the polynomial function.
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Fig. 12. Generated dissection image of an intestine model

By substituting the position of a feature point for θ, φ, θnew and φnew , we obtain
two linear equations of C

[θ]
ij and C

[φ]
ij . If the degree of θ and φ in Eq. (3) is N and M ,

the number of coefficients is 2NM . Thus, if we have more than NM feature points, we
can determine the coefficients. Since the system becomes linear equations that consist
of 2NM variables, we estimate the coefficients by a least square method.

If we fit the data to polynomial functions with 2NM variables; that is, we model
the shape of the object and the camera motion by the polynomial functions with 2NM
variables. Though the degree of freedom of the shape is quite reduced, we can efficiently
model a tube object to create the dissection image.

4 Experiments

To test our method, we set up an experiment using an endoscope and a model of an in-
testine. The endoscope has a wide-angle camera, with an image angle of approximately
140 degrees (diagonal). Fig 3 shows the input image and the projection into spherical
coordinates. Fig 12 shows the mosaicing result from 150 images. Though the object is
not a perfect cylinder and the motion is not straight and not at a constant speed, our
method successfully generated a mosaicing image.

Next, to evaluate the error of our proposed method, we used the annular image
sequence of a checker-pipe (shown in Fig 13) acquired by the hyper-omnidirectional
camera. The camera moved along a meandering path. The size of the input image was
640 × 480 pixels and the size of the panoramic image of spherical coordinates was
720 × 360 pixels. We computed our deformable registration on a PC with a Pentium4
3.2GHz processor. The computational time for the two images was 680 msec for fitting
750 data and 0.11 msec to transform one pixel. We compared our method with a simple
method that transform images only by translation along the θ and φ axes. Table 1 shows
the roots of mean square (RMS) errors for both methods, which are computed from
the differences of the positions of feature points after registration. We used a 5-degree
polynomial for θ, and a 2-degree polynomial for φ, that is the minimum requirement as
shown in 3.1. Our method successfully reduced the errors.

Fig 14 shows one part of the mosaicing results after registration. Fig 14(a) is regis-
tered by translation, and Fig 14(b) is the same part registered by our deformable regis-
tration. These results were generated from 250 images. Though the shape of the target
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Fig. 13. Used target object

Table 1. Comparison of root of the mean square of the size of the optical flow after transformation

registration RMS
translation 1.265132995
our approach 0.612701392

(a) Mosaic image by translation (b) Mosaic image by our approach

Fig. 14. Comparison of the Results

object is a simple cylinder, the mosaicing result was distorted because of the meander-
ing camera motion. On the other hand, the distortion in the results of the deformable
registration was reduced from that done by only translation.

5 Conclusion

This paper described a novel method to generate a dissection image of the inside of
an intestine. While examinations inside a tube object are difficult and time consuming
due to the limited field of view, our method provides an easy-to-understand view for
inspecting an intestine. Since a perspective or affine transformation is not suitable for
registration of annular images, we proposed a deformable registration by fitting a two
dimensional polynomial function. The proposed method successfully creates a dissec-
tion image of a generalized cylinder with arbitrary camera motion. Even if the object
moves and deforms during observation, it is possible for our method to mosaic images.
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As future work, since residual error exists after polynomial fitting, we will apply other
deformable registration techniques that have more degrees of freedom, for example, a
FEM-based method [1,2] to the imaging problem.
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