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Big Data

1 volume
sample size is big

feature dimensionality is big

2 variety
multiple formats: social, video, unstructured

problem is big and has many related tasks

3 velocity
batch → real-time
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Big Feature Dimension

Real-world data are often high-dimensional

text bioinformatics hyperspectral image

feature extraction / feature selection
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Feature Selection

1 filter approach
as preprocessing step (no interaction with learning algorithm)

2 wrapper approach
use the learning algorithm to score feature subsets

3 embedded approach
perform feature selection and learning simultaneously → sparse
solution

Regularized risk minimization

minimize loss `(w) + sparsity-inducing regularizer Ω(w)

Lasso (Tibshirani, 1996)

Ω(w) = ‖w‖1

highly correlated features → tends to arbitrarily select only
one of them
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Structured Sparsity

Features often have intrinsic structures → Structured sparsity

Group lasso (Yuan & Lin, 2006)

e.g., represent a categorical feature by a group of dummy
binary features

Ω(w) =
∑

gηg‖wg‖p (typically, p = 2 or ∞)
wg : subvector of w for the group g

Fused lasso (Tibshirani et al., 2005)

features are ordered in some sequential way (e.g., time)

Ω(w) = ‖w‖1 + λ
∑d−1

i=1 |wi − wi+1|
encourages sparsity and successive feature coefficients to be
similar
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Structured Sparsity...

Graph lasso

features are ordered in a graph G = (V ,E )

Ω(w) = ‖w‖1 +
∑

(i ,j)∈E |wi − wj |
encourages coefficients for nearby graph nodes to be similar

Requires the structure to be known in advance

group structure / sequential ordering / graph

may not be available
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Sparse Modeling with Automatic Feature Grouping

Goal

Feature coefficients

1 sparse

2 grouped automatically

3 have similar magnitudes for features in the same group

Example

group of dummy variables for the same categorical variable

protein-protein interaction networks: groups of co-regulated
genes

text classification: groups of correlated words

Advantages

variance reduction → better accuracy
simpler model → better interpretation
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OSCAR Regularizer (Bondell and Reich, 2008)

Octagonal Shrinkage and Clustering Algorithm for Regression

Ω(w) = ‖w‖1 + λ
∑

i<j max{|wi |, |wj |}

`1-regularizer: encourages sparsity
(convex) pairwise `∞-regularizer: tries to tie every coefficient
pair |wi |, |wj | together

constraint regions
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Challenging Optimization Problem

minw ‖y − Xw‖2 + λ1‖w‖1 + λ2
∑

i<j max{|wi |, |wj |}

convex, but difficult to solve

O(d2) terms (d : dimensionality)

Tailor-made solvers (Bondell & Reich, 2008)

quadratic program with O(d2) variables and O(d2)
constraints

Generic solvers

ProxFlow algorithm (Mairal et al., 2010)

complexity O(d5)

particularly challenging on high-dimensional data
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How to Solve this Optimization Problem?

What would Isaac Newton do?

Newton’s method!
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Back to Basics: Gradient Descent

`(w) + λΩ(w)

LOOP

1 find descent direction

2 choose stepsize

3 descent

Problem: ` and/or Ω may be nonsmooth

SVM: hinge loss (nonsmooth) +‖w‖22 (smooth)

lasso: square loss (smooth) +‖w‖1 (nonsmooth)

extend gradient to nonsmooth functions → subgradient
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(Sub)Gradient Descent

Advantages

easy to implement

low per-iteration complexity → good scalability (BIG data)

Disadvantage

uses first-order (gradient or subgradient) information

slow convergence rate (especially for nonsmooth objectives)
→ may require a large number of iterations
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Accelerated Gradient Methods

First developed by Nesterov in 1983

for smooth optimization

minw f (w) (f is smooth in w)

` and/or Ω may be nonsmooth

Extension to composite optimization (Nesterov, 2007)

objective has both smooth and nonsmooth components

minw f (w)︸ ︷︷ ︸
smooth

+ r(w)︸︷︷︸
nonsmooth

recently popularly used in machine learning
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FISTA (Beck & Teboulle, 2009)

Gradient descent on f (w)

ŵ t − 1
L∇f (ŵ t) = arg minw (w − ŵ t)T∇f (ŵ t) + L

2‖w − ŵ t‖2

For f (w)+Ω(w)

arg minw Q(w , ŵ t) ≡ (w − ŵ t)T∇f (ŵ t) + L
2‖w − ŵ t‖2+Ω(w)

L: Lipschitz constant of ∇f
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Accelerated Convergence

Convergence rate

gradient descent

smooth objective: O(1/t)

nonsmooth objective: O(1/
√

t)

accelerated gradient descent

O(1/t2)
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Proximal Step for OSCAR

minw ‖y − Xw‖2︸ ︷︷ ︸
`(w)

+λ1‖w‖1 + λ2

∑
i<j

max{|wi |, |wj |}︸ ︷︷ ︸
Ω(w)nonsmooth

How to efficiently compute the proximal step
minw (w − ŵ t)T∇`(ŵ t) + L

2‖w − ŵ t‖2 + Ω(w)?

can be solved in O(d log d) time!

Total time: O
(

1√
ε
(dn + d log d)

)
1√
ε
: convergence rate of FISTA

dn: time to compute gradient of ‖y − Xw‖2
d log d : time for proximal step

typically, n� log d → time = O
(

1√
ε
dn

)
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Experiment: Speedup

sample size n = 1000, dimension d = {10, 20, . . . , 20480}
compare with QP, SQP (Bondell & Reich, 2008) and
ProxFlow (Mairal et al., 2010)
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Recovers the Feature Structure

(a) ground truth (b) OSCAR (c) fused lasso (d) lasso

OSCAR can select relevant and correlated features
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Breast Cancer Data

300 genes (features); 295 tumors (examples)

fused elastic
lasso lasso net OSCAR

test accuracy 65.9 72.4 71.8 74.1
#nonzero features 40.0 217.2 147.0 103.8

[Zhong & Kwok. Efficient sparse modeling with automatic feature grouping.

ICML-2011, and TNNLS-2012]
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Big Problems

often involves multiple learning tasks

these tasks are related (share some information)

Example

digit recognition product recommendation

harness the task relationships → learn all tasks together

allow tasks to borrow strength from each other
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Multitask Learning (MTL)

Regularized risk minimization

tasks 1, 2, . . . ,T

weights w1,w2, . . . ,wT

add another regularizer

minw1,...,wT

∑T
t=1

`t(wt)︸ ︷︷ ︸
loss

+ Ωt(wt)︸ ︷︷ ︸
task-specific regularizer

 +

ΩMTL(w1,w2, . . . ,wT )︸ ︷︷ ︸
MTL regularizer
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Different Assumptions for ΩMTL

Assume: wt ’s form one group of correlated tasks

regularized MTL

Assume: wt ’s form one cluster with a few outliers

robust MTL

Unlikely to hold with a BIG number of tasks
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Task Grouping

Assume: wt ’s form clusters

clustered MTL

How many clusters?

needs to be fixed beforehand in clustered MTL

Every feature sees the same clustering structure

flexible enough?
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Motivating Example: Movie Recommendation
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Example 2: Features with Different Discriminating Power
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Goal

Still want the tasks to be clustered, but

task cluster structure can vary from feature to feature

infer the clustering structure automatically

Idea

extend the feature clustering idea to task clustering in MTL

James Kwok The Many Facets of Big Data



Introduction Big Feature Dimension Big Problems Big Sample Size Conclusion

Flexible Task-Clustered MTL

1 decompose each wt into ut + vt

u1, u2, . . . , uT : clustered
vt : task-specific variation

2 cluster the ut ’s feature by feature

for each feature d , minimize |ui,d − uj,d | for all tasks i and j

minU,V

T∑
t=1

‖yt − Xt(ut + vt)‖2︸ ︷︷ ︸
loss

+λ1‖U‖clus + λ2‖U‖2F + λ3‖V ‖2F︸ ︷︷ ︸
ridge regularizers

U = [u1, . . . , uT ],V = [v1, . . . , vT ]

‖U‖clus =
∑D

d=1

∑
i<j |ui ,d − uj ,d |

a convex relaxation of k-means clustering on each feature
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Special Cases

min
∑T

t=1 ‖yt − Xt(ut + vt)‖2 + λ1‖U‖clus + λ2‖U‖2F + λ3‖V ‖2F

1 λ1 = λ2 = λ3 = 0: independent LS regression on each task

2 λ1 =∞: regularized MTL (Evgeniou et al, 2005)

3 λ1 = 0: independent ridge regression on each task
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Nice Properties

Theoretical

With high probability, for large enough sample size,

the obtained task weights converge to the ground truth

U captures the clustering structure

tasks i , j are in the same cluster for feature d → ui,d = uj,d

tasks i , j are in different clusters → ui,d 6= uj,d

Computational

optimization using FISTA

similar to feature grouping, the proximal step can be
efficiently computed in O(TDn + DT log T ) time

T : number of tasks
D: feature dimension
n: sample size
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Experiment: Product Rating

Predict the ratings of students (tasks) on personal computers
(each described by 13 attributes)

Root mean squared error
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Product Rating: Task Clustering Structure

one main cluster for the first 12 attributes (related to
performance & service)

lots of varied opinions on the last attribute (price)
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Experiment: Digit Recognition

10-class classification problem → 10 1-vs-rest problems
use PCA features

FlexTClus has the lowest classification error
leading PCA features are more discriminative; trailing PCA
features form one cluster close to zero (black)

[Zhong & Kwok. Convex multitask learning with flexible task clusters.

ICML-2012]
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What if there are Many Many Tasks?

Multilabel classification

an instance can have more than one labels

Input : 𝒙 ∈ 𝑹𝒎 Output : 𝒚 ∈ {𝟎, 𝟏}𝒅 

bee 

bug 

flower 
pollen 

yellow 

. 

. 

. 

cf. multiclass classification: an instance can have only one
label

basic approach: one label, one task (binary relevance)
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Too Many Tasks

Flickr: > 20 million unique tags (labels) in 2010
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Too Many Tasks...

Open Directory Project: the largest human-edited Web directory

over 4 million websites
787,774 categories (labels)
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Label Transformation

𝒚 ∈ {𝟎, 𝟏}𝒅 

Random 
Transformation 

𝒚  ∈ 𝑹𝒌 

Training 
using BR 

𝒉 ∈ 𝑹𝒌 

Recovering 

𝒚  ∈ {𝟎, 𝟏}𝒅 

1 projects the d-dimensional label vector to a k-dimensional
space, where k � d

2 learn a regression model for each dimension of the
transformed label vector

3 predict in the low-dimensional space, then back-project to the
d-dimensional space

The transformed labels, though fewer in quantity, may be more
difficult to learn
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Label Selection

selects only a few output labels for training; reconstruct the
other output labels from this label subset

label subset comes from the original labels → learning
problems will not be more difficult

How to find the label subset?

optimization (group-sparse learning problem)
expensive, esp. with a lot of labels
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Column Subset Selection Problem

Finding the label subset is a column subset selection problem

Column Subset Selection Problem (CSSP)

given: matrix A ∈ Rn×d ; positive integer k

find C (k columns of A) that spans A as much as possible

AC : submatrix of A with columns indexed by C

minC :|C |=k ‖A− ACA†C︸ ︷︷ ︸
project onto AC

A‖F

in our case, A is just the label matrix Y!

Y: each column is a label, each row is a sample
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Existing CSSP Solvers

perform random sampling of the columns

sampling probability is based on the leverage score
pi = ‖(VT

k )(i)‖22/k

Vk : top k right singular vectors of Y; (VT
k )(i): ith column of

VT
k

leverage has been used to detect outliers in regression analysis
→ importance of each sample

1 (Drineas et al., 2006): sample O(k2) columns

a lot more than what we need (which is k)

2 (Boutsidis et al., 2009)

sample Θ(k log k) columns; then post-process to get k columns
post-processing can be even more computationally expensive
than the sampling step itself!
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Multilabel Classification via CSSP (ML-CSSP)

1: compute the sampling probability pi for each column in Y
based on leverage;

2: C ← ∅;
3: while |C | < k do
4: sample with replacement a column from Y using pi ’s;
5: if i /∈ C then
6: C ← C ∪ {i};
7: end if
8: end while
9: train classifiers for the k selected labels.
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Some Properties

With high probability, ‖Y − YCY†
CY‖F ≤ constant× ‖Y − Yk‖F

Yk : best rank-k approximation of Y

With high probability, we can get k different columns in O(k log k)
sampling rounds

may still need to sample O(k log k) columns in the worst case

empirical results show much smaller number

Time complexity

(Drineas et al., 2006) O(ndk) + O(k2)
(Boutsidis et al., 2009) O(ndk) + O(k log k) + O(k3 log2 k log(k log k))

ours O(ndk) + O(k log k)

Can also be kernelized
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Experiments

Compare ML-CSSP with

1 label transformation methods: PLST (Tai & Lin, 2012),
CPLST (Chen & Lin, 2012) , CL (Zhou et al., 2012)

2 label selection method: MOPLMS (Balasubramanian &
Lebanon, 2012)

3 Binary relevance (BR)

data set #samples #features #labels

cal500 502 68 174

corel5k 5,000 499 374

delicious 16,105 500 983

EUR-Lex (dc) 19,348 5,000 412

EUR-Lex (desc) 19,348 5,000 3,993

dmoz 394,756 829,208 35,437

James Kwok The Many Facets of Big Data



Introduction Big Feature Dimension Big Problems Big Sample Size Conclusion

RMSE and AUPRC

RMSE
data set ML-CSSP MOPLMS PLST CPLST CL BR
cal500 4.93 5.04 4.97 5.00 5.70 5.06
corel5k 1.89 1.89 1.91 1.91 2.71 1.91
delicious 4.29 - 4.27 4.26 5.58 4.26

EUR-Lex (dc) 1.22 - 1.22 1.23 2.03 1.50
EUR-Lex (desc) 2.93 - 3.02 3.06 4.51 3.51

dmoz 2.83 - 2.95 - - 4.02

AUPRC (Area Under the Precision-Recall Curve)
data set ML-CSSP MOPLMS PLST CPLST CL BR
cal500 0.500 0.459 0.488 0.412 0.169 0.442
corel5k 0.089 0.080 0.079 0.082 0.011 0.083
delicious 0.220 - 0.182 0.227 0.089 0.237

EUR-Lex (dc) 0.180 - 0.180 0.167 0.036 0.173
EUR-Lex (desc) 0.094 - 0.018 0.086 0.016 0.086

dmoz 0.016 - 0.001 - - 0.012

many methods cannot be run because of the large number of
labels (marked “-”)
ML-CSSP obtains better performance
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Encoding Time

time to perform label transformation/selection

data set ML-CSSP MOPLMS PLST CPLST CL
cal500 0.0 10.7 0.0 0.0 182.0
corel5k 0.2 36.8 0.2 0.3 292.0
delicious 11.6 - 11.6 16.0 5675.2

EUR-Lex (dc) 4.0 - 4.0 352.9 547.1
EUR-Lex (desc) 153.8 - 153.8 511.7 15585.5

dmoz 1428.9 - 1428.7 - -

ML-CSSP is almost as efficient as the fastest one (PLST)

[Bi & Kwok. Efficient multi-label classification with many labels. ICML-2013]
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Big Sample Size

ML tool: Kernel methods

Example (big data problem)

SVM on n training examples:

O(n2) memory for the n × n kernel matrix

inverting/eigenvalue decomposition of the kernel matrix →
O(n3) time
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Core Vector Machine

1 SVM training is a minimum enclosing ball (MEB) problem

2 near-optimal solutions are good enough in practical
applications → efficient approximation algorithms

at each iteration, expand the current ball B(ct , rt) by including the
furthest point

repeat until all the points are covered by B(ct , (1 + ε)rt)
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CVM in Classification

KDDCUP-99 intrusion detection data set (4,898,431 patterns)
method # train patns # test SVM training other proc

input to SVM errors time (in sec) time (in sec)
0.001% 47 25,713 0.000991 500.02

random 0.01% 515 25,030 0.120689 502.59
sampling 0.1% 4,917 25,531 6.944 504.54

1% 49,204 25,700 604.54 509.19
5% 245,364 25,587 15827.3 524.31

active learning 747 21,634 94192.213
CB-SVM 4,090 20,938 7.639 4745.483

CVM 4,898,431 19,513 1.4

CVM is fast and accurate

[Tsang, Kwok, Cheung. Core vector machines: Fast SVM training on very large

data sets. JMLR, 2005]
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Potential Limitations

Still need to solve a QP in finding the MEB of the core set

very large data set → large core set → large QP
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Low-Rank Approximation: Nyström Algorithm

Sample m columns from matrix K

C =

[
W
S

]
K =

[
W ST

S B

]

Rank-k Nyström approximation:

CW +
k CT

+

Time complexity: O(nmk + m3)

m� n → much lower than the O(n3) complexity
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How to Choose the Columns?

1 random sampling
2 probabilistic

chooses the columns based on a data-dependent probability

3 greedy approach
4 clustering-based

inexpensive; with interesting theoretical properties

[Zhang & Kwok. Clustered Nystrom method for large scale manifold learning

and dimension reduction. TNN, 2010]
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Tradeoff between Accuracy and Efficiency

more columns sampled, more accurate is the approximation

Example (data set with several millions samples)

sampling only 1% of the columns

W larger than 10, 000× 10, 000

SVD on W dominates and becomes prohibitive
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Ensemble Nyström Algorithm (Kumar et al., 2009)

Replace the large SVD by a number of small SVDs

ensemble of ne Nyström approximators, each samples m
columns

each expert performs a standard Nyström approximation

linearly combine the ne rank-k approximations
G̃1,k , G̃2,k , . . . , G̃ne ,k

G̃ ens =
ne∑
i=1

µi G̃i ,k (µi ’s: mixture weights)

James Kwok The Many Facets of Big Data



Introduction Big Feature Dimension Big Problems Big Sample Size Conclusion

Ensemble Nyström Algorithm...
Time complexity

O(nenmk + nem
3 + Cµ)

Cµ: cost of computing the mixture weights
serial implementation: (roughly) ne times that of Nyström
parallel implementation: (roughly) similar to Nyström

Implicitly, approximate W + ∈ Rnem×nem by a block diagonal matrix

+

u1

u2

u3

less accurate
James Kwok The Many Facets of Big Data
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Nyström + Randomized SVD

Idea

1 sample more columns (like ensemble Nyström)

2 use a SVD approximation that is more accurate but still
relatively efficient

+

standard Nyström: SVD (O(m3) complexity)

ensemble Nyström: block diagonal assumption

our proposal: randomized SVD (O(m2k + k3) complexity)

James Kwok The Many Facets of Big Data
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Is it Efficient?

Recall that n� m� k

Nyström O(nmk + m3)

ensemble Nyström O(nmk + nek
3 + Cµ)

randomized SVD O(n2k + k3)

Nyström + rand. SVD O(nmk + m2k + k3) = O(nmk + k3)

James Kwok The Many Facets of Big Data
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Is it Accurate?

Rank-k standard Nyström approximation K̂ (with m randomly
sampled columns)

E ‖K − K̂‖2 ≤ ‖K − Kk‖2 + 2n√
m

(maxi Kii )

Kk : best rank-k approximation

Proposed method

E ‖K − K̂‖2 ≤ ζ1/q‖K − Kk‖2 + (1 + ζ1/q) n√
m

(maxi Kii )

ζ: constant and ζ1/q close to 1
→ becomes ‖K − Kk‖2 + 2n√

m
(maxi Kii ), same as that for

standard Nyström

Proposed method is as accurate as standard Nyström
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Experiment

x-axis: number of sampled columns
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Image Segmentation

Intel Xeon X5540 CPU, 16GB memory (matlab)

3872× 2592 (10M pixels) 16.8 sec

4752× 3168 (15M pixels) 22.6 sec
James Kwok The Many Facets of Big Data



Introduction Big Feature Dimension Big Problems Big Sample Size Conclusion

Graphics Processors (GPU)

Popularly used in entertainment, high-performance computing

NVIDIA Tesla C1060

240 streaming processor cores

peak single-precision (SP) performance: 933 GFLOPS

peak double-precision (DP) performance: 78 GFLOPS

Intel Core i7-980X CPU

6 cores

peak SP: 158.4 GFLOPS

peak DP: 79.2 GFLOPS
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Experiments on GPU

Machine

two Intel Xeon X5560 2.8GHz CPUs, 32G RAM

four NVIDIA Tesla C1060 GPU cards

Linear speedup with number of GPUs (MNIST-8M data set)
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Different Numbers of Sampled Columns m

time (sec) relative
m run on CPU run on 4 GPUs (speedup) approx. error

2,000 908.1 24.5 (37.1x) 5.9 ×10−4

4,000 1,789.4 47.2 (37.9x) 5.5 ×10−4

6,000 2,647.8 81.7 (32.4x) 5.3 ×10−5

8,000 3,556.5 104.8 (33.9x) 5.4 ×10−5

10,000 4,426.4 119.5 (37.0x) 3.0 ×10−5

20,000 8,988.2 253.8 (35.4x) 1.1 ×10−5
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More GPU Comparisons

GPU versions of standard Nyström and ensemble Nyström

Time
number of samples (n) Nyström ours ensemble Nyström

4× 105 244.9 12.7 25.3
8× 105 368.8 22.4 39.3
4× 106 2,041.7 94.2 46.5

8.1× 106 6,884.0 81.7 81.2

Relative approximation error

n Nyström ours ensemble Nyström
4× 105 8.5× 10−5 9.4 ×10−5 4.4 ×10−4

8× 105 8.2× 10−5 8.3 ×10−5 4.5 ×10−4

4× 106 9.0× 10−6 9.1 ×10−6 6.9 ×10−5

8.1× 106 7.8× 10−6 7.8× 10−6 6.9 ×10−5

accuracy cost
standard Nyström
ensemble Nyström
proposed method
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Conclusion

Big data is difficult to handle

high-dimensional

involves a lot of tasks (related in some complex manner)

big sample size

high velocity

But there is hope

better models

OSCAR, flexible task clustering, transfer learning

better tools: optimization solvers and approximations

accelerated gradient descent, column subset selection solvers,
Nyström algorithm, stochastic algorithms, online algorithms

better hardware

GPU, parallel/distributed architecture
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I seem to have been only like a boy playing on the seashore, ...
whilst the great ocean of truth lay all undiscovered before me.

Isaac Newton

I seem to have been only like a boy playing on the seashore, ...
whilst the great ocean of data lay all undiscovered before me.

Modern day Isaac Newton
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