The Many Facets of Big Data

James Kwok

Department of Computer Science and Engineering Hong Kong University of Science and Technology Hong Kong

ACPR 2013

Big Data

Big Feature Dimension

- volume
 - sample size is big
 - feature dimensionality is big
- 2 variety
 - multiple formats: social, video, unstructured
 - problem is big and has many related tasks
- velocity
 - $\bullet \ batch \rightarrow real-time$

Big Feature Dimension

Big Data

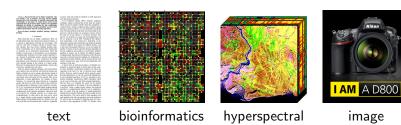
volume

- sample size is big
- feature dimensionality is big
- 2 variety
 - multiple formats: social, video, unstructured
 - problem is big and has many related tasks
- velocity
 - $\bullet \ batch \rightarrow real-time$

Big Feature Dimension

Big Feature Dimension

Real-world data are often high-dimensional



• feature extraction / feature selection

Feature Selection

- filter approach
 - as preprocessing step (no interaction with learning algorithm)
- Wrapper approach
 - use the learning algorithm to score feature subsets
- embedded approach
 - $\bullet\,$ perform feature selection and learning simultaneously $\rightarrow\,$ sparse solution

Regularized risk minimization

minimize $loss \ell(w) + sparsity-inducing regularizer \Omega(w)$

Lasso (Tibshirani, 1996)
•
$$\Omega(w) = ||w||_1$$

• highly correlated features \rightarrow tends to arbitrarily select only one of them

Big Feature Dimension

Structured Sparsity

Features often have intrinsic structures \rightarrow Structured sparsity

Group lasso (Yuan & Lin, 2006)

- e.g., represent a categorical feature by a group of dummy binary features
- $\Omega(w) = \sum_{g} \eta_{g} ||w_{g}||_{p}$ (typically, $p = 2 \text{ or } \infty$)
 - w_g : subvector of w for the group g

Fused lasso (Tibshirani et al., 2005)

• features are ordered in some sequential way (e.g., time)

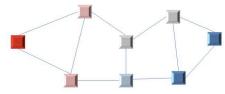
- $\Omega(w) = \|w\|_1 + \lambda \sum_{i=1}^{d-1} |w_i w_{i+1}|$
- encourages sparsity and successive feature coefficients to be similar

Big Feature Dimension

Structured Sparsity...

Graph lasso

• features are ordered in a graph G = (V, E)



- $\Omega(w) = \|w\|_1 + \sum_{(i,j) \in E} |w_i w_j|$
- encourages coefficients for nearby graph nodes to be similar

Requires the structure to be known in advance

- group structure / sequential ordering / graph
- may not be available

Sparse Modeling with Automatic Feature Grouping

Goal

Feature coefficients

- sparse
- 2 grouped automatically
- I have similar magnitudes for features in the same group

Example

- group of dummy variables for the same categorical variable
- protein-protein interaction networks: groups of co-regulated genes
- text classification: groups of correlated words

Advantages

- \bullet variance reduction \rightarrow better accuracy
- \bullet simpler model \rightarrow better interpretation

Big Feature Dimension

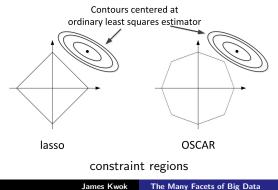
Big Problems Big Sample Size Conclusion

OSCAR Regularizer (Bondell and Reich, 2008)

Octagonal Shrinkage and Clustering Algorithm for Regression

$\Omega(w) = \|w\|_1 + \lambda \sum_{i < j} \max\{|w_i|, |w_j|\}$

- ℓ_1 -regularizer: encourages sparsity
- (convex) pairwise ℓ_{∞} -regularizer: tries to tie every coefficient pair $|w_i|, |w_j|$ together



Big Feature Dimension

Challenging Optimization Problem

$$\min_{w} \|y - Xw\|^2 + \lambda_1 \|w\|_1 + \lambda_2 \sum_{i < j} \max\{|w_i|, |w_j|\}$$

- convex, but difficult to solve
- $O(d^2)$ terms (d: dimensionality)

Tailor-made solvers (Bondell & Reich, 2008)

• quadratic program with $O(d^2)$ variables and $O(d^2)$ constraints

Generic solvers

- ProxFlow algorithm (Mairal et al., 2010)
- complexity $O(d^5)$

particularly challenging on high-dimensional data

Big Feature Dimension

Big Problems Big Sample Size Conclusion

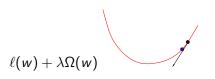
How to Solve this Optimization Problem?

What would Isaac Newton do?

Newton's method!

Big Feature Dimension

Back to Basics: Gradient Descent



LOOP find descent direction choose stepsize descent

Problem: ℓ and/or Ω may be nonsmooth

- SVM: hinge loss (nonsmooth) $+ ||w||_2^2$ (smooth)
- lasso: square loss (smooth) $+ ||w||_1$ (nonsmooth)

\bullet extend gradient to nonsmooth functions \rightarrow subgradient

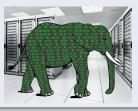
Big Feature Dimension

Big Problems Big Sample Size Conclusion

(Sub)Gradient Descent

Advantages

- easy to implement
- low per-iteration complexity \rightarrow good scalability (BIG data)



Disadvantage

- uses first-order (gradient or subgradient) information
- slow convergence rate (especially for nonsmooth objectives)
 → may require a large number of iterations

Big Feature Dimension

Accelerated Gradient Methods

First developed by Nesterov in 1983

• for smooth optimization

 $\min_{w} f(w)$ (f is smooth in w)

 ℓ and/or Ω may be nonsmooth

Extension to composite optimization (Nesterov, 2007)

• objective has both smooth and nonsmooth components

$$\min_{w} \underbrace{\frac{f(w)}{smooth}}_{smooth} + \underbrace{\frac{r(w)}{smooth}}_{nonsmooth}$$

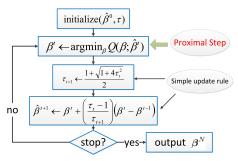
• recently popularly used in machine learning

Big Feature Dimension

Big Problems Big Sample Size Conclusion

FISTA (Beck & Teboulle, 2009)

Gradient descent on f(w) $\hat{w}^t - \frac{1}{L} \nabla f(\hat{w}^t) = \arg \min_w (w - \hat{w}^t)^T \nabla f(\hat{w}^t) + \frac{L}{2} ||w - \hat{w}^t||^2$ For $f(w) + \Omega(w)$



arg min_w $Q(w, \hat{w}^t) \equiv (w - \hat{w}^t)^T \nabla f(\hat{w}^t) + \frac{L}{2} ||w - \hat{w}^t||^2 + \Omega(w)$ • L: Lipschitz constant of ∇f Big Feature Dimension

Accelerated Convergence

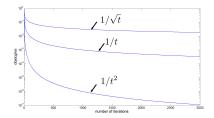
Convergence rate

gradient descent

- smooth objective: O(1/t)
- nonsmooth objective: $O(1/\sqrt{t})$

accelerated gradient descent

• $O(1/t^2)$



Big Feature Dimension

Proximal Step for OSCAR

$$\min_{w} \underbrace{\|y - Xw\|^{2}}_{\ell(w)} + \lambda_{1} \|w\|_{1} + \lambda_{2} \sum_{i < j} \max\{|w_{i}|, |w_{j}|\}}_{\Omega(w) \text{ nonsmooth}}$$

How to efficiently compute the proximal step $\min_{w} (w - \hat{w}^{t})^{T} \nabla \ell(\hat{w}^{t}) + \frac{L}{2} ||w - \hat{w}^{t}||^{2} + \Omega(w)?$

can be solved in
$$O(d \log d)$$
 time!

Total time:
$$O\left(\frac{1}{\sqrt{\epsilon}}(dn+d\log d)\right)$$

- $\frac{1}{\sqrt{\epsilon}}$: convergence rate of FISTA
- dn: time to compute gradient of $||y Xw||^2$
- $d \log d$: time for proximal step

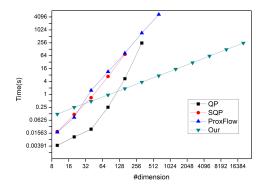
• typically,
$$n \gg \log d \rightarrow time =$$

 $\frac{1}{\sqrt{dn}}$

Big Feature Dimension

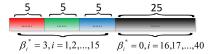
Experiment: Speedup

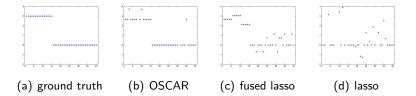
- sample size n = 1000, dimension $d = \{10, 20, \dots, 20480\}$
- compare with QP, SQP (Bondell & Reich, 2008) and ProxFlow (Mairal et al., 2010)



Big Feature Dimension

Recovers the Feature Structure





OSCAR can select relevant and correlated features

Breast Cancer Data

• 300 genes (features); 295 tumors (examples)

		fused	elastic	
	lasso	lasso	net	OSCAR
test accuracy	65.9	72.4	71.8	74.1
#nonzero features	40.0	217.2	147.0	103.8

[Zhong & Kwok. Efficient sparse modeling with automatic feature grouping. ICML-2011, and TNNLS-2012]

Big Feature Dimension

Conclusion

Big Problems

- often involves multiple learning tasks
- these tasks are related (share some information)

Example 000001/11/202333344444 00000//11/2022333344444 55555666666777178881899994 55555666666777178881899994 55555666666777178881899994 5555566666777178881899994 600001/11/20223333344444 6000001/11/20223333344444 6000001/11/20223333344444 6000001/11/20223333344444 9000001/11/20223333344444 6000001/11/20223333344444 6000001/11/20223333344444 9000001/11/20223333344444 9000001/11/20223333444444 9000001/11/202233333444444 9000001/11/202233333444444 9000001/11/20223333444444 9000001/11/20223333444444 9000001/11/20223333444444 9000001/11/202233444444 9000001/11/202233444444 9000001/11/202233444444 9000001/11/2022344 9000001/11/2022344 9000001/11/2022344 9000001/11/2022344 9000001/11/2022344 9000001/11/2022344 9000001/11/20224 9000001/2024 9000001/2024 9000001/2024 9000001/2024 9000001/2024

- harness the task relationships \rightarrow learn all tasks together
- allow tasks to borrow strength from each other

Multitask Learning (MTL)

Regularized risk minimization

- tasks 1, 2, ..., *T*
- weights w_1, w_2, \ldots, w_T
- add another regularizer

$$\min_{w_1,...,w_T} \sum_{t=1}^{T} \left(\underbrace{\ell_t(w_t)}_{\text{loss}} + \underbrace{\Omega_t(w_t)}_{\text{task-specific regularizer}} \right) + \underbrace{\Omega_{\text{MTL}}(w_1, w_2, \dots, w_T)}_{\text{MTL regularizer}}$$

Big Feature Dimension

Big Problems Big Sample Size Conclusion

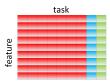
Different Assumptions for Ω_{MTL}

Assume: w_t 's form one group of correlated tasks

regularized MTL



Assume: w_t 's form one cluster with a few outliers • robust MTL

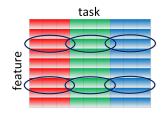


Unlikely to hold with a BIG number of tasks

Task Grouping

Assume: w_t's form clusters

clustered MTL



How many clusters?

needs to be fixed beforehand in clustered MTL

Every feature sees the same clustering structure

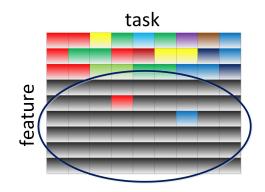
• flexible enough?

Big Feature Dimension

Motivating Example: Movie Recommendation

Big Feature Dimension

Example 2: Features with Different Discriminating Power



Still want the tasks to be clustered, but

- task cluster structure can vary from feature to feature
- infer the clustering structure automatically

Idea

extend the feature clustering idea to task clustering in MTL

Big Feature Dimension

Flexible Task-Clustered MTL

1 decompose each w_t into $u_t + v_t$

- u_1, u_2, \ldots, u_T : clustered
- vt: task-specific variation

2 cluster the u_t 's feature by feature

• for each feature d, minimize $|u_{i,d} - u_{j,d}|$ for all tasks i and j

$$\min_{U,V} \underbrace{\sum_{t=1}^{T} \|y_t - X_t(u_t + v_t)\|^2}_{\text{loss}} + \lambda_1 \|U\|_{clus} + \underbrace{\lambda_2 \|U\|_F^2 + \lambda_3 \|V\|_F^2}_{\text{ridge regularizers}}$$

•
$$U = [u_1, \ldots, u_T], V = [v_1, \ldots, v_T]$$

- $||U||_{clus} = \sum_{d=1}^{D} \sum_{i < j} |u_{i,d} u_{j,d}|$
 - a convex relaxation of *k*-means clustering on each feature

Special Cases

$$\min \sum_{t=1}^{T} \|y_t - X_t(u_t + v_t)\|^2 + \lambda_1 \|U\|_{clus} + \lambda_2 \|U\|_F^2 + \lambda_3 \|V\|_F^2$$

λ₁ = λ₂ = λ₃ = 0: independent LS regression on each task
 λ₁ = ∞: regularized MTL (Evgeniou et al, 2005)
 λ₁ = 0: independent ridge regression on each task

Nice Properties

Theoretical

With high probability, for large enough sample size,

- the obtained task weights converge to the ground truth
- U captures the clustering structure
 - tasks i, j are in the same cluster for feature $d \rightarrow u_{i,d} = u_{j,d}$
 - tasks i, j are in different clusters $\rightarrow u_{i,d} \neq u_{j,d}$

Computational

- optimization using FISTA
- similar to feature grouping, the proximal step can be efficiently computed in $O(TDn + DT \log T)$ time
 - T: number of tasks
 - D: feature dimension
 - n: sample size

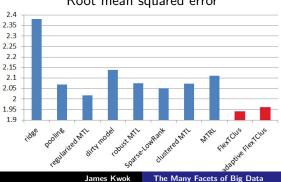
Big Feature Dimension

Big Problems Big Sample Size

Conclusion

Experiment: Product Rating

Predict the ratings of students (tasks) on personal computers (each described by 13 attributes)

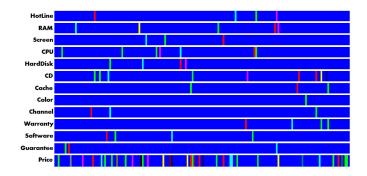


Root mean squared error

Big Feature Dimension

Conclusion

Product Rating: Task Clustering Structure



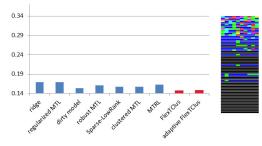
- one main cluster for the first 12 attributes (related to performance & service)
- lots of varied opinions on the last attribute (price)

Big Feature Dimension

Big Problems Big Sample Size Conclusion

Experiment: Digit Recognition

- $\bullet~$ 10-class classification problem $\rightarrow~$ 10 1-vs-rest problems
- use PCA features



- FlexTClus has the lowest classification error
- leading PCA features are more discriminative; trailing PCA features form one cluster close to zero (black)

[Zhong & Kwok. Convex multitask learning with flexible task clusters.

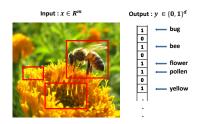
ICML-2012]

Big Feature Dimension

What if there are Many Many Tasks?

Multilabel classification

• an instance can have more than one labels



- cf. multiclass classification: an instance can have only one label
- basic approach: one label, one task (binary relevance)

Big Feature Dimension

Too Many Tasks

Flickr: > 20 million unique tags (labels) in 2010

sense architecture art and australia autom baty tank sensors beach berit use to test birthday black backandowine blue bw California canada Canon car cat chicago china christmas church City clouds cetr concert avec day de dig england europe an family taxico festival lim norids flower flowers food scelar france findes instagramappi bene iphoneography sector bath fields who inde a late landscape light live london we matco as metor moder measure music nature new newyork regressive high nice or and scelar france france control photography sector portrait raw red new rock as asinfanciaco scelard sea seate show sky snow spain spring Square squareformat street summer sine subset taken tesas bande tops travel two trees fing uk understand uce usa vacation weakenge water wedding white winter were street sub-

Too Many Tasks...

Open Directory Project: the largest human-edited Web directory

- over 4 million websites
- 787,774 categories (labels)

Top: Computers (94,925)

- Computer Science (1,876)
- Security (2,575)
- Hardware (5,205)
- Software (27,390)
- Internet (24,521)
- Systems (2,570)

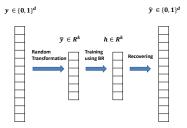
- Algorithms (303)
- Artificial Intelligence (1,188)
- Artificial Life (208)
- Bulletin Board Systems (93)
- CAD and CAM (731)
- Computer and Technology Law@ (105)
- Data Communications (948)
- Data Formats (1,679)
- Desktop Publishing (113)
- E-Books (155)
- Emulators (375)
- Fonts@ (272)
- Games@ (31,921)
- Graphics (1,243)
- Hacking (167)
- Home Automation (67)

- Human-Computer Interaction (261)
- Intranet (39)
- MIS@ (375)
- Mobile Computing (486)
- Multimedia (2,455)
- Newsgroups@ (275)
- Open Source (699)
- Operating Systems@ (7,745)
- Parallel Computing (321)
- Performance and Capacity (43)
- Programming (14,397)
- Robotics (722)
- Speech Technology (372)
- Supercomputing (35)
- Usenet (275)
- Virtual Reality (330)

The Many Facets of Big Data

Big Problems Big Sample Size Conclusion

Label Transformation

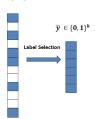


- projects the d-dimensional label vector to a k-dimensional space, where k le d
- learn a regression model for each dimension of the transformed label vector
- I predict in the low-dimensional space, then back-project to the d-dimensional space

The transformed labels, though fewer in quantity, may be more difficult to learn

 selects only a few output labels for training; reconstruct the other output labels from this label subset

 $\mathbf{v} \in \{0, 1\}^d$



 \bullet label subset comes from the original labels \rightarrow learning problems will not be more difficult

How to find the label subset?

- optimization (group-sparse learning problem)
- expensive, esp. with a lot of labels

James Kwok The

The Many Facets of Big Data

Column Subset Selection Problem

Finding the label subset is a column subset selection problem

Column Subset Selection Problem (CSSP)

- given: matrix $\mathbf{A} \in \mathbb{R}^{n \times d}$; positive integer k
- find C (k columns of A) that spans A as much as possible
 - A_C : submatrix of A with columns indexed by C

$$\min_{C:|C|=k} \|\mathbf{A} - \underbrace{\mathbf{A}_C \mathbf{A}_C^{\dagger}}_{\text{project onto } \mathbf{A}_C} \mathbf{A}\|_F$$

- in our case, A is just the label matrix Y!
 - Y: each column is a label, each row is a sample

Big Feature Dimension

Existing CSSP Solvers

- perform random sampling of the columns
- sampling probability is based on the leverage score $p_i = \|(\mathbf{V}_k^T)_{(i)}\|_2^2/k$
 - \mathbf{V}_k : top k right singular vectors of \mathbf{Y} ; $(\mathbf{V}_k^T)_{(i)}$: *i*th column of \mathbf{V}_k^T
 - leverage has been used to detect outliers in regression analysis \rightarrow importance of each sample
- (Drineas et al., 2006): sample $O(k^2)$ columns
 - a lot more than what we need (which is k)
- (Boutsidis et al., 2009)
 - sample $\Theta(k \log k)$ columns; then post-process to get k columns
 - post-processing can be even more computationally expensive than the sampling step itself!

Multilabel Classification via CSSP (ML-CSSP)

- compute the sampling probability p_i for each column in Y based on leverage;
- 2: $C \leftarrow \emptyset$;
- 3: while |C| < k do
- 4: sample with replacement a column from **Y** using p_i 's;
- 5: **if** *i* ∉ *C* **then**
- $6: \quad C \leftarrow C \cup \{i\};$
- 7: end if
- 8: end while
- 9: train classifiers for the k selected labels.

Some Properties

With high probability, $\|\mathbf{Y} - \mathbf{Y}_C \mathbf{Y}_C^{\dagger} \mathbf{Y}\|_F \leq \text{constant} \times \|\mathbf{Y} - \mathbf{Y}_k\|_F$

• Y_k: best rank-k approximation of Y

With high probability, we can get k different columns in $O(k \log k)$ sampling rounds

- may still need to sample $O(k \log k)$ columns in the worst case
- empirical results show much smaller number

Time complexity

(Drineas et al., 2006)	O(ndk)	+	$O(k^2)$		
(Boutsidis et al., 2009)	O(ndk)	+	$O(k \log k)$	+	$O(k^3 \log^2 k \log(k \log k))$
ours	O(ndk)	+	$O(k \log k)$		

Can also be kernelized

Experiments

Compare ML-CSSP with

- label transformation methods: PLST (Tai & Lin, 2012), CPLST (Chen & Lin, 2012), CL (Zhou et al., 2012)
- label selection method: MOPLMS (Balasubramanian & Lebanon, 2012)
- 3 Binary relevance (BR)

data set	#samples	#features	#labels
cal500	502	68	174
corel5k	5,000	499	374
delicious	16,105	500	983
EUR-Lex (dc)	19,348	5,000	412
EUR-Lex (desc)	19,348	5,000	3,993
dmoz	394,756	829,208	35,437

RMSE and AUPRC

		RMSE				
data set	ML-CSSP	MOPLMS	PLST	CPLST	CL	BR
cal500	4.93	5.04	4.97	5.00	5.70	5.06
corel5k	1.89	1.89	1.91	1.91	2.71	1.91
delicious	4.29	-	4.27	4.26	5.58	4.26
EUR-Lex (dc)	1.22	-	1.22	1.23	2.03	1.50
EUR-Lex (desc)	2.93	-	3.02	3.06	4.51	3.51
dmoz	2.83	-	2.95	-	-	4.02

AUPRC (Area Under the Precision-Recall Curve)

data set	ML-CSSP	MOPLMS	PLST	CPLST	CL	BR
cal500	0.500	0.459	0.488	0.412	0.169	0.442
corel5k	0.089	0.080	0.079	0.082	0.011	0.083
delicious	0.220	-	0.182	0.227	0.089	0.237
EUR-Lex (dc)	0.180	-	0.180	0.167	0.036	0.173
EUR-Lex (desc)	0.094	-	0.018	0.086	0.016	0.086
dmoz	0.016	-	0.001	-	-	0.012

- many methods cannot be run because of the large number of labels (marked "-")
- ML-CSSP obtains better performance

Encoding Time

• time to perform label transformation/selection

data set	ML-CSSP	MOPLMS	PLST	CPLST	CL
cal500	0.0	10.7	0.0	0.0	182.0
corel5k	0.2	36.8	0.2	0.3	292.0
delicious	11.6	-	11.6	16.0	5675.2
EUR-Lex (dc)	4.0	-	4.0	352.9	547.1
EUR-Lex (desc)	153.8	-	153.8	511.7	15585.5
dmoz	1428.9	-	1428.7	-	-

• ML-CSSP is almost as efficient as the fastest one (PLST)

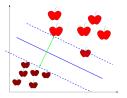
[Bi & Kwok. Efficient multi-label classification with many labels. ICML-2013]

Big Feature Dimension

Big Problems Big Sample Size Conclusion

Big Sample Size

ML tool: Kernel methods



Example (big data problem)

SVM on *n* training examples:

- $O(n^2)$ memory for the $n \times n$ kernel matrix
- inverting/eigenvalue decomposition of the kernel matrix $\rightarrow O(n^3)$ time

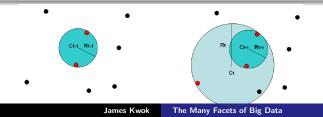
Big Feature Dimension

Big Problems Big Sample Size Conclusion

Core Vector Machine

1 SVM training is a minimum enclosing ball (MEB) problem

- ear-optimal solutions are good enough in practical applications → efficient approximation algorithms
 - at each iteration, expand the current ball $B(c_t, r_t)$ by including the furthest point
 - repeat until all the points are covered by $B(c_t, (1+\epsilon)r_t)$



Big Feature Dimension

Big Problems Big Sample Size Conclusion

CVM in Classification

K	KDDCUP-99 intrusion detection data set (4,898,431 patterns)					
method		# train patns	# test	SVM training	other proc	
		input to SVM	errors	time (in sec)	time (in sec)	
	0.001%	47	25,713	0.000991	500.02	
random	0.01%	515	25,030	0.120689	502.59	
sampling	0.1%	4,917	25,531	6.944	504.54	
	1%	49,204	25,700	604.54	509.19	
	5%	245,364	25,587	15827.3	524.31	
active le	earning	747	21,634	94192.213		
CB-S	VM	4,090	20,938	7.639	4745.483	
CV	M	4,898,431	19,513	1.	4	

. • 1 . . (4 000 401 ١

• CVM is fast and accurate

[Tsang, Kwok, Cheung. Core vector machines: Fast SVM training on very large data sets. JMLR, 2005]

Big Problems Big Sample Size Conclusion

Potential Limitations

Still need to solve a QP in finding the MEB of the core set

 \bullet very large data set \rightarrow large core set \rightarrow large QP

Big Problems Big Sample Size Conclusion

Low-Rank Approximation: Nyström Algorithm

Sample m columns from matrix K

•
$$C = \begin{bmatrix} W \\ S \end{bmatrix}$$
 $K = \begin{bmatrix} W & S^T \\ S & B \end{bmatrix}$

Rank-k Nyström approximation: $CW_k^+ C^{T}$ •

Time complexity: $O(nmk + m^3)$

• $m \ll n \rightarrow$ much lower than the $O(n^3)$ complexity

How to Choose the Columns?

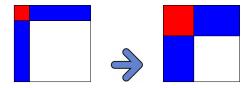
- I random sampling
- 2 probabilistic
 - chooses the columns based on a data-dependent probability
- greedy approach
- Instering-based
 - inexpensive; with interesting theoretical properties

[Zhang & Kwok. Clustered Nystrom method for large scale manifold learning and dimension reduction. **TNN**, 2010]

Big Feature Dimension

Big Problems Big Sample Size Conclusion

Tradeoff between Accuracy and Efficiency



• more columns sampled, more accurate is the approximation

Example (data set with several millions samples)

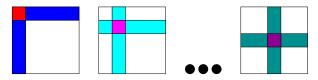
- sampling only 1% of the columns
- W larger than $10,000\times10,000$
- SVD on W dominates and becomes prohibitive

Conclusion

Ensemble Nyström Algorithm (Kumar et al., 2009)

Replace the large SVD by a number of small SVDs

• ensemble of *n_e* Nyström approximators, each samples *m* columns



- each expert performs a standard Nyström approximation
- linearly combine the n_e rank-k approximations $\tilde{G}_{1,k}, \tilde{G}_{2,k}, \dots, \tilde{G}_{n_e,k}$

$$ilde{G}^{ens} = \sum_{i=1}^{n_e} \mu_i ilde{G}_{i,k}$$
 (μ_i 's: mixture weights)

Big Problems Big Sample Size

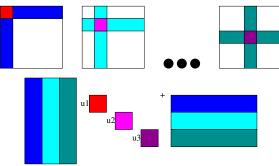
Conclusion

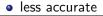
Ensemble Nyström Algorithm...

Time complexity

- $O(n_e nmk + n_e m^3 + C_\mu)$
 - C_{μ} : cost of computing the mixture weights
 - serial implementation: (roughly) ne times that of Nyström
 - parallel implementation: (roughly) similar to Nyström

Implicitly, approximate $W^+ \in \mathbb{R}^{n_e m \times n_e m}$ by a block diagonal matrix



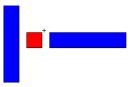


Big Problems Big Sample Size

Conclusion

Nyström + Randomized SVD

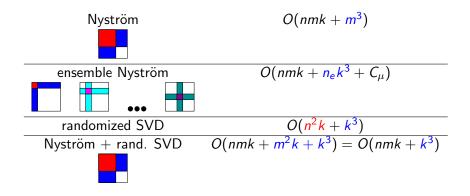




- standard Nyström: SVD (O(m³) complexity)
- ensemble Nyström: block diagonal assumption
- our proposal: randomized SVD ($O(m^2k + k^3)$ complexity)

Is it Efficient?

Recall that $n \gg m \gg k$



Is it Accurate?

Rank-k standard Nyström approximation \hat{K} (with m randomly sampled columns)

$$\mathbb{E} \| \mathbf{K} - \hat{\mathbf{K}} \|_2 \leq \| \mathbf{K} - \mathbf{K}_k \|_2 + rac{2n}{\sqrt{m}} (\max_i \mathbf{K}_{ii})$$

• K_k: best rank-k approximation

Proposed method

$$\mathbb{E} \| K - \hat{K} \|_{2} \leq \zeta^{1/q} \| K - K_{k} \|_{2} + (1 + \zeta^{1/q}) \frac{n}{\sqrt{m}} (\max_{i} K_{ii})$$

ζ: constant and ζ^{1/q} close to 1
 → becomes ||K - K_k||₂ + ²ⁿ/_{√m}(max_i K_{ii}), same as that for standard Nyström

Proposed method is as accurate as standard Nyström

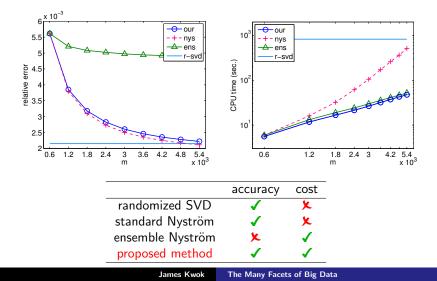
Intro	ductio	on
00		

 Big Problems
 Big Sample Size
 O

Conclusion

Experiment

x-axis: number of sampled columns



Big Feature Dimension

Conclusion

Image Segmentation

• Intel Xeon X5540 CPU, 16GB memory (matlab)

 3872×2592 (10M pixels)

4752 × 3168 (15M pixels)

James Kwok

22.6 sec

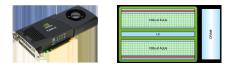
The Many Facets of Big Data

Big Feature Dimension

Big Problems Big Sample Size Conclusion

Graphics Processors (GPU)

Popularly used in entertainment, high-performance computing



NVIDIA Tesla C1060

- 240 streaming processor cores
- peak single-precision (SP) performance: 933 GFLOPS
- peak double-precision (DP) performance: 78 GFLOPS

Intel Core i7-980X CPU

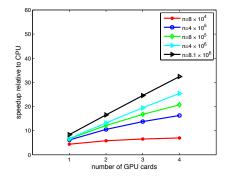
- 6 cores
- peak SP: 158.4 GFLOPS
- peak DP: 79.2 GFLOPS

Experiments on GPU

Machine

- two Intel Xeon X5560 2.8GHz CPUs, 32G RAM
- four NVIDIA Tesla C1060 GPU cards

Linear speedup with number of GPUs (MNIST-8M data set)



Big Feature Dimension

Big Problems Big Sample Size

Conclusion

Different Numbers of Sampled Columns *m*

		relative		
т	run on CPU	run on 4 GPUs	(speedup)	approx. error
2,000	908.1	24.5	(37.1x)	5.9×10^{-4}
4,000	1,789.4	47.2	(37.9x)	5.5×10^{-4}
6,000	2,647.8	81.7	(32.4x)	5.3×10^{-5}
8,000	3,556.5	104.8	(33.9x)	5.4×10^{-5}
10,000	4,426.4	119.5	(37.0x)	3.0×10^{-5}
20,000	8,988.2	253.8	(35.4x)	$1.1 imes 10^{-5}$

Big Problems Big Sample Size

Conclusion

More GPU Comparisons

• GPU versions of standard Nyström and ensemble Nyström Time

number of samples (n)	Nyström	ours	ensemble Nyström
4×10^{5}	244.9	12.7	25.3
$8 imes 10^5$	368.8	22.4	39.3
$4 imes 10^6$	2,041.7	94.2	46.5
$8.1 imes10^6$	6,884.0	81.7	81.2

Relative approximation error

п	Nyström	ours	ensemble Nyström
$4 imes 10^5$	$8.5 imes 10^{-5}$	9.4×10^{-5}	4.4×10^{-4}
$8 imes 10^5$	$8.2 imes10^{-5}$	$8.3 imes 10^{-5}$	4.5×10^{-4}
$4 imes 10^6$	$9.0 imes10^{-6}$	9.1×10^{-6}	6.9×10^{-5}
$8.1 imes10^{6}$	$7.8 imes10^{-6}$	$7.8 imes10^{-6}$	6.9×10^{-5}

	accuracy	cost
standard Nyström	✓	X
ensemble Nyström	×	1
proposed method	✓	1

Conclusion

Big data is difficult to handle

- high-dimensional
- involves a lot of tasks (related in some complex manner)
- big sample size
- high velocity
- But there is hope
 - better models
 - OSCAR, flexible task clustering, transfer learning
 - better tools: optimization solvers and approximations
 - accelerated gradient descent, column subset selection solvers, Nyström algorithm, stochastic algorithms, online algorithms
 - better hardware
 - GPU, parallel/distributed architecture

I seem to have been only like a boy playing on the seashore, ... whilst the great ocean of truth lay all undiscovered before me. Isaac Newton

I seem to have been only like a boy playing on the seashore, ... whilst the great ocean of data lay all undiscovered before me. *Modern day* Isaac Newton