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Abstract

This paper presents an efficient method for automat-

ically segmenting the digestive organs in a Video Cap-

sule Endoscopy (VCE) sequence. The method is based

on unique characteristics of color tones of the digestive

organs. We first introduce a color model of the gastroin-

testinal (GI) tract containing the color components of

GI wall and non-wall regions. Based on the wall re-

gions extracted from images, the distribution along the

time dimension for each color component is exploited

to learn the dominant colors that are candidates for

discriminating digestive organs. The strongest candi-

dates are then combined to construct a representative

signal to detect the boundary of two adjacent regions.

The results of experiments are comparable with previ-

ous works, but computation cost is more efficient.

1. Introduction

A Video Capsule Endoscopy (VCE) sequence cap-

tured over 8 hours by a Wireless Capsule Endoscopy [1]

device usually contains about 57,000 images spanning

the organs of the Gastrointestinal (GI) tract: esophagus,

stomach, small intestine, and colon. At the beginning

of an examination, doctors often browse frames to find

landmarks forming boundaries between the digestive

organs, such as the pylorus (the boundary between the

stomach and the small intestine), or ileocecal valve (IV)

(the boundary between the small intestine and colon).

The segmenting results produce suggestive information

to estimate the position of the capsule in the diagnostic

procedure. Manually detecting the boundaries (espe-

cially the pylorus and IV), however, is time-consuming

and requires a doctor’s undivided attention owing to the

huge number of frames to be inspected and the unknown

orientation of the capsule device.

To reduce the examination time and burden on the

doctors, Coimbra et al. [2] approached segmenting the

landmark frames as a problem of video segmentation in

a Bayesian framework. Recently, Mackiewicz et al. [3]

proposed an intensive approach using combinations of

multiform image features (color, texture, and motion),

and robust classifiers (SVC, GMM) to find cues for the

best segmentation results. In these works, the authors

considered the problem using a framework consisting

of two stages. In the first stage, images are classified

according to the digestive region, while in the latter

stage, a video segmentation technique is utilized to de-

tect landmark frames. Unfortunately, these works suf-

fered from high computation costs and issues regarding

recognition accuracy in the first stage. In other words,

obtaining a reasonable result requires a large training

data set to deal with over-fitting problems and unclear

patterns in the digestive organ images.
In view of these challenges, we use the color char-

acteristics of the GI tract to obtain well-discriminated

digestive organs. We make use of the fact that the color

of each digestive organ has unique tones: the stomach

contains pinkish colors, while the small intestine con-

tains pinkish-yellowish colors [3]. We first construct

a GI color model based on a large VCE dataset. The

components of the GI color model are then separated

into three groups: the GI wall, darkness and noise (with

the latter two groups are referred to as non-wall com-

ponents). We then exploit the appearance frequency of

wall color components along the time dimension. Con-

sequently, a series of dominant or candidate images for

discriminating digestive organs can be learned. To de-

tect landmark frames, a signal is structured by combin-

ing the candidates along the transit route of the capsule.

Sharp changes in the distributions of the dominant col-

ors implied in the signal suggest the positions of the

landmarks. The detection results are comparable with

recent work [3]; however, the proposed method requires

less computation time as well as being more easily de-

ployable in clinical applications.
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Figure 1. (a) The GI color model. (b) Distribution of P (.) with the color components plotted in

PCA space. (c) Initialization scheme for the component classification.
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Figure 2. (a) Wall color components. (b)-(c) Two examples of meaningful segmented regions.
(In each panel, the original image is on the left, with the segmented image on the right.)

2. The GI Color Model

2.1 Material and the generic GI color model

Intuitively, constructing a consistent GI color model

requires a very large dataset of VCE sequences to cover

a variety of patient data. For this study, we collected

30 sequences from a database containing data for 300

patients, being careful to select a wide range of ages,

gender and length of video sequences. Subsequently, a

large dataset containing ≈ 107× 109 images was quan-

tized using the popularity color algorithm. For an orig-

inal RGB image (256 x 256 pixels), each color chan-

nel is divided into N bins to construct a global color

histogram. The popularity algorithm simply selects the

K color components with the highest histogram values.

The components included in the model are uniquely col-

lected from fully quantized data. The probability P(.) of

a color component crgb is defined by:

P (crgb) =
H(crgb)

T
, (1)

where H(crgb) is the total number of pixels belonging

to color crgb and T is the total number of pixels in the

dataset. N = 32 and K = 256 are optimal values.

Fig. 1(a) shows the constructed GI color model in RGB

space, while Fig. 1(b) gives the distribution of P(.),

where PC 1 and PC 2 are the primary components trans-

formed from the RGB space using the PCA. Fig. 1(b) is

also rendered using the true colors of the components.

2.2 Color component classification

The generic GI color model constructed in Fig. 1(a)

contains components classified as GI wall or non-wall

regions. The wall consists of homogenous regions and

visualizing surfaces of rugae in the GI tract, whereas

non-wall regions are the dark lumen regions or con-

taminated noise such as water bubbles, gas, food, etc.

Intuitively, Fig. 1(b) verifies that with a large dataset,

the probability P(.) of noise is very small, whereas

P(.) of wall regions and dark regions is more robust.

Therefore, our proposed scheme includes two steps for

training and classifying the color components into three

groups: wall components, darkness and noise. First,

we initialize a small set including components that are

strong representatives of both the GI wall and non-wall

using two thresholds Thresh1 and Thresh2, respec-

tively. P (.) > Thresh1 strongly defines the com-

ponents of wall or darkness regions, whereas P (.) <

Thresh2 suggests noise data. Fig. 1(c) shows the

blue contours of high P(.) components in Fig. 1(b).
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Figure 3. (a) Prototype to generate sc(t). (b)-(c) Two sc(t) candidates with high distributions in

the stomach and the small intestine, respectively. The blue line marks the pylorus position .

These contours suggest an estimated Thresh1 value

(e.g., Thresh1 = 0.01). The noise components, plot-

ted within the red dotted lines, have P (.) < Thresh2
with Thresh2 <= 0.01 × Thresh1 value. Based on

the appearance of these components (Fig. 1(c)), mean-

ingful groups are labeled manually. We then deploy the

K-NN classifier using R G B features to assign labels

for the remaining components.

Figure 2(a) shows the wall color components sepa-

rated from the model in Fig. 1(a). Wall regions in an

image can therefore be segmented. Fig. 2(b)-(c) shows

two examples, the results of which are robustly even de-

spite the inclusion of hard contaminations such as water

bubbles (in the right panel). Moreover, to detect land-

mark frames, color components that clearly discrimi-

nate the digestive organs can be learned based on the

segmented images along the capsule’s route. Such com-

ponents are referred to as dominant components.

3. Detecting the landmark frames

3.1 Learning the dominant color components

Assume that at time ti, a meaningful region with area

△ concatenated from k consecutive frames is extracted.

The probability of a color crgb at time ti is:

sc(ti) =
H(crgb)

△
(2)

A signal sc(t) denoting the distribution of color crgb

along the time dimension is constructed. Fig. 3(a)

illustrates a prototype for generating signal sc(t) (at

t1, t2, t3). Note that △ is composed from several frames

around ti so that △ reaches the predetermined value (in

pixels). Using Eq. (2), at each time ti the appearance

frequencies of the color components are normalized.

Therefore, the dominant components can be learned

by exploiting the shape of the signal sc(t) around the

boundary of two adjacent regions.

For the learning phase, ten sequences with already

marked landmark frames, were collected as the train-

ing data set. The signals sc(t) of all wall color com-

ponents were generated and their shapes around land-

mark frames were observed. Fig. 3(b)-(c) shows the

components that are suggestive for detecting pylorus.

In Fig. 3(b), two signals show high distributions in the

stomach region, yet barely appear in the small intestine.

Contrary to those, Fig. 3(c) shows two signals whose

distributions are high when the capsule enters the small

intestine. To detect these signals, we simply examine

the derivation of the first order of sc(t). Consequently,

a series of candidates for detecting stomach/small intes-

tine are shown in Fig. 4. Thus, the strongest candidates

are selected based on their appearance frequency in the

training sequences.

Figure 4. Dominant colors in the stomach
(left) and the small intestine (right).

3.2 Detecting the landmarks

The strongest candidates suggest good features for

discriminating two adjacent regions. In other words,

constructing a signal S(t) that combines the strongest

candidates will significantly cover distributions of dom-

inant color tones for each digestive region. A simple

version of signal S can be defined as follows:

S(t) = max(sci
(t)|i = 1..m) + (3)

(sign)max(scj
(t)|j = 1..n)

where sci
and scj

are, respectively, signals of the m

and n strongest candidates obtained from the learning

scheme described above. To detect the boundary of two

adjacent regions, the sign operators in (2) reverse sign

of the candidates from one region with respect to the

other. The landmark frames are then detected using a

zero-crossing technique. (See details in Fig. 5)
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Figure 5. The result of a sequence with detected points is marked. The components comprising

S(t) are plotted in their true colors.

Table 1. The distance errors of the testing data

Results

Pylorus Distance Errors IV Distance Errors

Undetected Detected

<1

min

1-2

min

2-5

min

>5

min Total FAR

Corre

cted

<1

min

1-2

min

2-5

min

>5

min Total

Number of Seq 19 11 11 9 50 3 9 12 8 9 9 50

Percentage (%) 38 22 22 18 100 25 100 32 21 24 24 100

Mean (frames) 45 156 390 1878 68 176 353 1758

Median (frames) 105 319

4. Experimental results

To evaluate the proposed method, we randomly se-

lected 50 sequences from the patient database. The sig-

nal S(t) in (4) is generated from the four strongest can-

didates (m = n = 4) in each region. The signal sc(t)
of each component crgb (by (2)) is generated by ran-

domly selecting 1200 data points in a full video data.

The value of △ = 200, 000 pixels was pre-determined.

The S(t) of an example sequence is shown in Fig.

5, in which the components sc(t) are expressed in their

true colors. Two landmark frames for pylorus and IV

are detected on the smoothed S(t) signal. We then

calculated the absolute distance between the detected

frames and ground-truth data, in which the ground-truth

data were labeled by experts at the Osaka City Univer-

sity Hospital. The distance errors of the testing data are

classified into four groups (within 1 min., 1-2 min. , 2-5

min., and > 5 min., with 1 min. = 120 frames), as given

in Table 1. The undetected column shows the detected

sequences that do not locate the IV due to unreachable

colon region in the route of the capsule. Similarly to [3],

the median is mainly used for statistical measurement.

The medians of 80% of the sequences (with distance <

5 min) are comparable with the final results in [3] (91

and 288 frames for pylorus and IV, respectively). (In

this study, the esogastric junction was not detected, be-

cause in practice it can be detected clearly and quickly

by manual inspection). For each sequence, generating

signal S(t) and detecting the landmark frames takes less

than three minutes. This is obviously more faster than

the approaches in [2, 3] because of complexity of com-

putations in their learning algorithms.

5. Conclusion

In this paper, we proposed an efficient method for

automatically segmenting digestive organs from VCE

sequences. The color characteristics of the digestive

organs were exploited according to the proposed GI

color model. To detect landmark frames, a signal rep-

resenting the distributions of the dominant colors was

constructed. The experimental results are comparable

with previous works. Moreover, the proposed GI color

model also suggests further applications such as image

enhancement and abnormal region analysis.

References

[1] G. Iddan et al. . Wireless capsule endoscope. Nature,

405:417, May 2000.
[2] J. P. S. Cunha et al. Automated topographic segmentation

and transit time estimation in endoscopic capsule exams.

IEEE Trans. on Medical Imaging, 27(1):19–27, 2008.
[3] M. Mackiewicz et al. Wireless capsule endoscopy color

video segmentation. IEEE Trans. on Medical Imaging,

27(12):1769–1781, 2008.


