
Computers in Biology and Medicine 39 (2009) 16 -- 26

Contents lists available at ScienceDirect

Computers in Biology andMedicine

journal homepage: www.e lsev ier .com/ locate /cbm

Detection of contractions in adaptive transit time of the small bowel from wireless
capsule endoscopy videos

Hai Vua,∗, Tomio Echigob, Ryusuke Sagawaa, Keiko Yagic, Masatsugu Shibad, Kazuhide Higuchid,
Tetsuo Arakawad, Yasushi Yagia
aDepartment of Intelligent Media, The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Osaka 567-0047, Japan
bDepartment of Engineering Informatics, Osaka Electro-Communication University, 18-8 Hatsu-cho, Osaka 572-8530, Japan
cKobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Hyogo 658-8558, Japan
dGraduate School of Medicine, Osaka City University, 1-4-3 Asahimachi, Osaka 545-8585, Japan

A R T I C L E I N F O A B S T R A C T

Article history:
Received 17 June 2007
Accepted 22 October 2008

Keywords:
Gastrointestinal motility
Intestinal contraction detection
Wireless capsule endoscopic images

Recognizing intestinal contractions from wireless capsule endoscopy (WCE) image sequences provides a
non-invasive method of measurement, and suggests a solution to the problems of traditional techniques
for assessing intestinal motility. Based on the characteristics of contractile patterns and information on
their frequencies, the contractions can be investigated using essential image features extracted from WCE
videos. In this study, we proposed a coherent three-stage procedure using temporal and spatial features.
The possible contractions are recognized by changes in the edge structure of the intestinal folds in Stage
1 and evaluating similarity features in consecutive frames in Stage 2. In order to take account of the prop-
erties of contraction frequency, we consider that the possible contractions are located within windows
including consecutive frames. The size of these contraction windows is adjusted according to the passage
of the WCE. These procedures aim to exclude as many non-contractions as possible. True contractions are
determined through spatial analysis of directional information in Stage 3. Using the proposed method,
81% of true contractions are detected with a 37% false alarm rate for evaluations in the experiments. The
overall performance of this method is better than that of previous methods, in terms of both the quality
and quantity indices. The results suggest feasible data for further clinical applications.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

The characteristics of intestinal motility in the human small
bowel have been the subject of decades of exhaustive research by
physiologists (e.g. [1–5]), because relevant information in terms of
the number, frequency, and distribution of intestinal contractions
can indicate the presence of different malfunctions. Weak and dis-
organized contractions are associated with bacterial overgrowth,
intestinal obstruction or paralytic ileus [1], while dysfunctions in, or
absence of, contractions over a long period can present as functional
dyspepsia [2]. Manometry is currently the favored technique for
measuring intestinal motility [2]. This involves the introduction of a
probe into the patient's gastrointestinal (GI) tract, and is therefore
highly invasive, and can cause significant patient discomfort, due to
the long distances to be examined and the loop configuration of the
small bowel.
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Wireless capsule endoscopy (WCE) [6] has recently been intro-
duced as a non-invasive means of inspection in GI tract. This tech-
nique is especially successful in finding bleeding regions, Crohn's
disease, and suspected tumors of the small bowel [7,8]. The WCE
utilizes a swallowable endoscopic device (11 × 26mm,3.7 g, in [9])
that is ingested and propelled by natural peristalsis through the GI
tract. In a typical examination, WCE takes approximately 7–8h to
pass through the GI tract, capturing images at a rate of 2 fps. The
sequence thus generates about 57,000 images that can then be an-
alyzed. Although this technique was not originally designed for the
assessment of intestinal motility, WCE image sequences reflect in-
testinal activity during the transit time of the capsule. They present a
useful source information of visualizing intestinal contractions. How-
ever, manually analyzing the intestinal events from the WCE videos
is a tedious and time-consuming task for physicians. Thus, the main
purpose of this study was to use computer vision techniques to au-
tomatically detect and quantify intestinal contractions. Because of
its non-invasive nature and the minimal attention needed by physi-
cians, it is a promising method which overcomes the drawbacks of
traditional techniques.

http://www.sciencedirect.com/science/journal/cobm
http://www.elsevier.com/locate/cbm
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Fig. 1. (a) A schematic view of contractions along small bowel. (b) Some patterns of contraction cycles in a sequence including 60 continuous frames (left to right, top to
bottom). The [A]–[C] are frames at most extreme stage of the contraction cycle.

As observed in a WCE image sequence, a cycle of contraction be-
gins at the widest state of the intestinal lumen, then proceeds to oc-
clude the lumen, before reaching themost extreme state of shrinkage
with extensive intestinal wrinkling. The intestinal folds then relax
again at the end of the contraction. A schematic view of contractions
along the small bowel is illustrated in Fig. 1a and some patterns of
contraction cycles in a sequence including 60 continuous frames are
shown in Fig. 1b. As shown in these figures, variations in the image
features throughout the sequence of consecutive frames suggest a
possible contraction cycle. The frames showing images at the most
extreme stage of a contraction cycle are the easiest to recognize, be-
cause they are associated with shrinkage of the circular muscle lay-
ers. Moreover, in terms of the physiology, the duration of intestinal
contractions varies along the small bowel; a well-recognized pattern
of intestinal contractions, as stated by [1,5], is that the maximal rate
of contractions decreases in a series of steps from proximal to distal
regions. These characteristics obviously provide useful information
for detecting contractions in WCE image sequences.

Recognizing intestinal contractions in WCE videos is still at an
early stage of development. In order to describe the intestinal struc-
ture at the most extreme stage of a contraction cycle, previous stud-
ies focused on extracting the skeleton of intestinal folds (wrinkles)
and/or the intestinal lumen regions. These features were then used to
describe directional information which was encoded into symmet-
rical patterns, such as linear radial patterns in [10], or the star-wise
patterns in [11]. On the other hand, considering temporal patterns
of contractions in an image sequence, [12] claimed an imbalance
problem between the numbers of contractile and non-contractile
frames. The prevalence of contractile frames is very small, i.e. be-
tween 1:50 and 1:100. To address this problem, in [10] a contrac-
tion cycle is defined if there are at least five wrinkle frames in a
sequence of 10 consecutive images. Spyridonos et al. [13] identified
possible contractions by sharp variations in the gray-level intensity
within a fixed sequence of nine frames. In this preliminary study, the

natural characteristics of intestinal contractions, including their vari-
able length, could be recognized [14]. Although the properties of
contractions frequency as described above imply a various contrac-
tion length along small bowel, no attempt has been made in any of
these studies to investigate them in term of the temporal patterns.
Using these properties to aid the recognition of contractions thus
should help to improve detection rate.

In this scenario, we have extended our earlier work in [14] to take
account of the frequency gradient of intestinal contractions through-
out the passage of the WCE. Contraction detection is therefore re-
fined in terms of GI physiology. The contractions are considered as
dynamic events in WCE videos and are recognized using both spa-
tial and temporal information. The temporal features provide the
potential to detect contractions through changes in the edges pixels
of the intestinal folds (edge signal), and by evaluating the degree of
similarity between successive frames. In the context of signal pro-
cessing, the positions of possible contractions can be located within
windows including consecutive frames by convoluting the edge sig-
nal with kernel functions. Relevant configurations of these kernels
are established such that varying the size of the windows reflects the
contraction frequency gradient, which gradually reduces in a series
of steps along the small bowel. Based on results detecting possible
contractions, the spatial features are analyzed in order to identify
true contractions through a classifier method. With this approach,
the results of temporal analysis can be tuned to prune as many non-
contraction frames as possible, and thus the detection of contractions
throughout the whole small bowel is improved. Our results showed
an overall detection rate of 81% for true contractions (sensitivity)
and a 37% false alarm rate (FAR). These recognition rates are better
than those produced by [10,13], and show a significant reduction in
FAR compared with [14]. These results suggest that this technique
is reliable for further clinical applications.

The rest of this paper is organized as follows: Section 2 describes
the methodologies of the proposed method. Section 3 explains
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Fig. 2. Formulating problems for contraction detections from an image sequence. (a) Number of the edges pixels of the corresponding sequence. (b) Different between
images of contractions case A and non-contractions. (c) Edge patterns of contraction image (left side), and non-contraction image (right side).

detail implementations of a three-stage procedure. In Section 4,
experiments and discussions of the results are presented. Finally,
Section 5 concludes the work and suggests further research.

2. Methodology

2.1. Characteristics of intestinal contraction frequencies

From a physiological point of view, intestinal motility is mani-
fested by electrical activity in the cell membranes in the intestinal
wall, under myogenic, neural and chemical control [5]. The electri-
cal activity can be divided into two distinct signals: the slow wave
(referred to as the electrical control activity—ECA) and spike bursts
(referred to as electrical response activity—ERA). Spike bursts occur
during depolarization plateaus of the slow wave signals. They are
associated with the muscular contractions required to produce in-
testinal contractions (Fig. 1a). Fig. 3a illustrates the relationship be-
tween the slow wave and the appearance of the spike burst signal.
As shown, spike bursts are superimposed on the slow wave signal
and are therefore phase-locked to the slow wave frequency. They
can only occur at the crest of a slow wave, and the maximal fre-
quency of contractile activity at any given site in the intestine is thus
directly related to the slow wave frequency in that region. As stated

by [1,5], the slow wave frequency in the small bowel decreases in a
series of steps from proximal to distal regions, as shown in Fig. 3b
(for detail, refer to [1, Chapter 7] or [5, Chapter 6]). In humans, the
maximal slow wave frequency in the duodenum is 12 cycles/min,
but is only 3–4 cycles/min at the end of the small bowel.

Based on these formulations for contractions, if an existing f (x)
signal reflects contraction activity in a WCE image sequence, poten-
tial contractions are located where this signal is a triangular shape.
From the theory of signal processing, these positions can be lo-
cated within windows including w frames by convolving this signal
with kernel functions. Moreover, these kernels can be configured
so that w can be adjusted during WCE transit through the small
bowel. As a result, the length of candidate contractions can be ad-
justed to take account of the reduction in contraction frequencies.
For example, at a capture rate of 2 fps, the maximal contraction
rate in humans (around 12 cycles/min) suggests that the contrac-
tions visualized in WCE images should last for approximately five
frames in the proximal regions of the small bowel. This value in-
creases duringWCE transit to adapt to the reducing frequency of con-
tractions in distal regions. The section below explains the selection
of image features so that the detection of patterns of contractions
along f (x) signal can be implemented as well as determining true
contractions.
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Fig. 3. (a) Relations of slow wave and spike burst signals. Contractions are associated
with the spike bursts that are superimposed on the slow wave signal [5]. (b) Slow
wave frequency gradient in the small bowel. [A]: Linear gradient along small bowel.
[B]: The frequency falls in a series of steps [1].

2.2. Characteristics of image features for the contraction detections

AWCE image sequence consists of frames of 256×256 pixels and
24-bit color in RGB color space. The image features include a 140◦
field of view, 1–30mm depth of view, and 1:8 magnification (refer-
ring to [9] for technical specifications). Similar to images captured by
conventional endoscopy devices, WCE images usually show homo-
geneous regions inside the GI tract. To characterize the meaning of
the WCE images, previous studies have selected various image fea-
tures, depending on their aims. For example, to segment digestive
organs in the GI tract, color features were favored in the works of
Mackiewicz et al. [15,16] and Coimbra et al. [17,18]. For calculating
disparity between images, Glukhovsky et al. [19] used the average
intensity of pixels or pixel clusters. To control display rates of WCE
videos, Vu et al. [20] used combinations of color similarity and mo-
tion displacement features.

For detecting contractions, the edges of intestinal wrinkles are
important cues, because shrinkage of the intestinal muscle is always
associated with changes in the edge features. The result of previous
works [10,11] also revealed that the edges of intestinal folds were
discriminative features for the recognition of contractile patterns.
Therefore, edge features were used in this study in order to construct
a f (x) signal to identify potential contractions. Fig. 2a shows the edge
signals from 60 consecutive frames in Fig. 1b. During contractions,
the number of edge pixels in the image increases rapidly, and then
decreases again. This pattern shows local peaks that correspond with
the shrinkage of the intestinal folds in contraction cycles.

In addition to edge features, contraction events could be also in-
ferred from sharp variations between consecutive frames, because
the contractile activity spans adjacent frames with sudden shrink-
ages of the intestinal lumen. In order to make use of this feature,
an evaluation of the distribution of similar regions in consecutive
frames, called the similarity pattern, can be applied. An example of
the maximum dissimilarities between pixels in adjacent contraction
frames is plotted as in Fig. 2b—left panel. This discriminates them
from non-contraction cases, as shown in Fig. 2b—right panel. As a

comparison, if the similarity pattern of a candidate contraction in-
cludes large regions of high similarity, it suggests it is not a true
contraction.

The results of the above analysis of image features in consecu-
tive frames, or temporal analysis, allow the identification of possible
contractions. The patterns at the most extreme stage in the contrac-
tion cycle, as shown in Fig. 1b, when the intestinal wall strongly
and sharply contracts the muscle towards a center point, are the
most clearly observed. The structure of the image at this stage is
therefore used to identify true contractions. Fig. 2c shows different
patterns in contractile frame and non-contraction frame. The direc-
tions of intestinal wrinkles plot a structure with dominant orienta-
tions toward to a center point of the intestinal lumen in contraction
cases (left panel); whereas this pattern is spread in a same direction
in non-contraction cases (right panel). These discriminative features
suggest that contractions can be described using a fixed paradigm or
a statistical model of directional information. For example, in [10],
descriptors code directional information in radial patterns, while in
[11] a star-wise pattern was used. In this study, a statistical model is
used to determine the pattern, because it can take account of natural
characteristics of contractions that do not fit into specific categories.

The above analysis shows that contractions are highly recogniz-
able by both spatial and temporal features. The addition of features
reflecting the contraction frequency gradient, as described in Sec-
tion 2.1, suggests a means of improving the recognition rate. Thus, if
� is a set of contractions in an image sequence, an instance includ-
ing frames Fi · · · Fj can be considered to be located within a window
such that the size of the windows are adjustable during WCE transit.
They are true contractions if conditions below are satisfied:

� =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Fi · · · Fj

∣∣∣∣∣∣∣∣∣

edges(Fi · · · Fj) is a maximal local peaks

lower distribution of similarity(Fi · · · Fj)
edges direction of the peak in(Fi · · · Fj)

≈ a contractile pattern

(1)

Following this definition, a coherent procedure for implementations
of the proposed method is described below.

3. Detection of contractions using a three-step procedure

3.1. Stage 1—edge extractions to detect possible contractions

The f (x) (with x is frame number) is denoted as a function of edge
pixels number:

f (x) =
∑
i

� with
{
� = 1 if i is an edge pixel

� = 0 otherwise
(2)

To extract edge features, some edge detection algorithms such as
the Laplace of Gaussian and Canny edge detectors [21] can be imple-
mented. Experiments show that the Cannymethodmakes a trade-off
between performance and computation times. To reduce the noise
due to uninformative edges, edge pixels are counted in a region
where most of the edges appear. The size of the region (192 x 192
pixels) is large enough to ensure that no important edges are lost.
The position of the region is determined using a raster scan proce-
dure. The signal f (x) is normalized in the range of [0, 1] and smoothed
by a Gaussian function to remove noise.

Based on the properties of contractions as described in Section 2,
the possible contractions are located where f (x) is in the form of
a triangle. These positions can be detected by locating local peaks.
However, not all the signals present a perfect triangular pattern; this
depends on the length and the strength of the contractions. Thus,
a mathematical morphology method is applied to create a simpler
graph than the original signal. In particular, the morphological open-
ing can suggest the location of positive peaks that are narrower than
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a structural element. The opening operator consists of applying a di-
lation of an erosion of the smoothed signal f (x) by the flat structuring
element B as defined by:

• Erosion operator �B(f (x)):

�B(f (x)) = inf
t∈B

[f (x − t)] = min{f (x + t) − B(t)|t ∈ B}

• Dilation operator �B(f (x)):

�B(f (x)) = sup
t∈B

[f (x − t)] = max{f (x + t) + B(t)|t ∈ B}

• Opening operator O(f (x)):

O(f (x)) = �B[�B(f (x))] (3)

A procedure to look for a number of consecutive frames within the
opening signal that exceed the structuring element (B) duration
is implemented. As a result of this process, potential contractions
are located within windows of length w (in number of frames).
To satisfy the descriptions in Section 2.1, w can be adjusted in
the context of changing values of sigma (�) of the Gaussian func-
tion and length of the structuring element B. A note that the
� is converted from full width at half maximum values (with
FWHM = 2

√
2 ln 2�). Meaning of FWHM values is to control num-

ber of nearest neighbor frames for the smoothing function. These
values are set along the WCE transit time as described below:

# define Nstep K
# define nIncreasing k
% startingpoint: the frame number at the starting point of small
bowel
% endingpoint: the frame number at the ending point of small
bowel
% sigma_0: initial value of the sigma of Gaussian function
% length_0: initial value of the length of structuring element B
nDuration = IntegerRound((endingpoint − startingpoint)/K)
for i = 0 to K − 1
{
startingpoint = (i − 1) ∗ Duration + startingpoint
endingpoint = startingpoint + nDuration − 1
if frame_number in[startingpoint..endingpoint]
{
sigma = sigma_0 + i ∗ nIncreasing
length = length_0 + i ∗ nIncreasing
}
call detect_maximal_local_peaks(sigma, length)
}

In our implementations, we defined values of Nstep (K = 4), in
which each step increased by nIncreasing (k = 2). The positions of
startingpoint and endingpoint of the small bowel are determined by
the physicians. As a result, window size w is adjustable during the
course of WCE transit, as shown in Fig. 4. For example, in the proxi-
mal regions, the contractions usually span five frames (correspond-
ing with 2.5 s), whereas in the distal regions, this value is larger,
at approximately 11–13 frames. To avoid small variations, the dis-
tance between maximum and minimum values of local peaks must
be above a certain level. The results of this procedure assign labels
to starting and ending frames for each contraction. Fig. 5a shows an
example of the processing of a sequence including 100 consecutive
frames. Figs. 5b and c show the effects of different configurations on
changing window sizes assigned for the same edge signal at nearly
end of the small bowel. With configurations designed to obtain larger
windows sizes, the FAR is reduced. We will discuss the results from
different positions in the small bowel in Section 4.
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Fig. 4. Various window sizes during transit time of the WCE. The figure of contrac-
tions frequency gradient along small bowel is adapted from [1].

3.2. Stage 2—evaluation of the similarities between consecutive frames
for eliminating non-contractions

The results in Fig. 5a show two instances of local maximal
peaks: [A] representing a true contraction (positive case), whereas
[B] is a false result (negative case). As described in Section 2.2 and
shown in Fig. 3b, if a candidate contraction includes large regions
of high similarity, it is not a true contraction. Thus, to eliminate the
negative cases, evaluation of the similarities between frames was
implemented. These evaluations were based on results using an
unsupervised clustering method adopted from [22]. Because of the
observation that each homogeneous region in consecutive frames
was represented by a Gaussian distribution, the set of regions was
represented by a Gaussian mixture model (GMM). The similarities
were extracted and clustered as in the procedure below. Assuming
that a possible contraction includes w = N frames, feature vectors
were constructed as in the configuration in Fig. 6a. Frames were
first divided into Nblocks with a X×Y pixels size and an intensity his-
togram H including Nbins for each block was calculated. The distance
sim of a block t between two adjacent frames j and j+1 is defined by

simt
j,j+1 =

Nbins∑
m=1

|Ht
j (m) − Ht

j+1(m)|

where H(m) = 1
XY

∑
x∈X

∑
y∈Y

�

with

⎧⎨
⎩

� = 1 if Round
(
I(x, y)
Nbins

)
= m

� = 0 otherwise
(4)

Thus, the feature vector � of the possible contraction is defined by

� = {simt
0,1, . . . , sim

t
N−1,N ,posx,posy} (5)

In (5), besides the similarity of blocks, the two features posx and
posy identify a position of the block on the images. After discarding
16 pixels in each dimension that belong black corner regions, visible
regions of WCE images are 240 pixels. In our implementation, values
ofNbins=16 and the number of blocksNblocks=144 (or a 20×20 pixels
size for each block) are predetermined. For a mixture of K Gaussians,
a random variable � presents a probability to a Gaussian component
k by

fk(�|�) = �k
1√

(2	)d|
k|
exp

{
−1
2
(� − �k)

T
−1
k (� − �k)

}
(6)
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Fig. 5. (a) Possible contractions are marked on an original signal with starting (asterisks) and ending (circles) frames. [A] is a positive contraction; [B] is a non-contraction.
(b) and (c) show the results with different window sizes for edge signals almost at the end of the small bowel. The manual contractions are marked by diamonds (the
strong stages) and rectangles (starting and ending) in (b) and (c).

where the parameter set �={�i,�k,
k}Kk=1 consists of �k >0,
∑K

k=1�k=
1 and �k ∈ Rd and 
k is a [d × d] positive definite matrix (in this
case, d = N − 1).

Given a set of feature vectors �1, . . . ,�n a maximum likelihood
(ML) criterion is used for training of the data to derive the parameters
set �, yielding

�ML = argmax�f (�1, . . . .,�n|�) (7)

The EM algorithm [23] is an iterative method to obtain �ML. The
iterative updating process is based on a random initialization and
repeated until it reaches a pre-defined number of iterations. The
parameter set �ML then provides probabilities following (6) to assign
a feature vector � to a cluster by using a maximum a posteriori (MAP)
principle. The MIXMOD library [24] is used for this scheme.

The results of the clustering process are then assessed to discard
redundant cases. If the largest clusters include the high similarity
values, it implies that almost all frames of a candidate contraction are
similar, suggesting a low probability of it being a positive contraction.
These would therefore be classed as non-contractions. A procedure
for implementation is described below:

Step 1: Select the largest clusters (the clusters with a high propor-
tion; in our implementation, with a predefined K=3, the two
largest clusters are selected).

Step 2: Calculate mean values in these clusters.
Step 3: If these mean values are smaller than a threshold, this can-

didate becomes a non-contraction case.

Figs. 6b and c show the results of this process to eliminate negative
cases of contractions [B] in Fig. 5a.
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Fig. 6. (a) Configuration to get the feature vectors. (b) Results of clustering similarity data (with K = 3) of the negative case (marked as [B]) in Fig. 5a, the ratio of cluster 1
is 61% and of cluster 2 is 30%. (c) Overlap the results on middle frames. Means of similarity data are 0.6 for cluster 1 and 0.53 for cluster 2.

3.3. Stage 3—detect true contractions through spatial features

The structures of contractile patterns vary because of their natural
characteristics. Not all of the wrinkle directions are isotropic and the
patterns are not always purely symmetrical. Moreover, the pattern
in the occluded intestinal lumen is sometimes quite ambiguous to
define. Therefore, unlike [10,11], we described the structure of the
contractile image in terms of a statistical model. Features derived
from this model were then utilized to classify true contractions.

From observations in Section 2.2, the orientation of the edges
of intestinal wrinkles during the strongest stage of contraction was
a powerful feature for discriminating between contractions and
non-contractions. In order to characterize these patterns, an edge
direction histogram was used. As shown in [25], this model is ro-
bust enough to compare structural similarities between images. The
frame with the maximum edge number, after Stage 2, was selected
as representing the strongest stage of contraction.

Based on the edge detector in Section 3.1, the gradient directions
of edge pixels were extracted. For each edge pixel p, its gradient
vector is defined as

D(p) = {dx, dy}
where dx and dy are estimated from a gradient operator in vertical
and horizontal directions, respectively. The amplitude and direction
of gradient vectors are

Amp(p) = |dx| + |dy| and �(p) = arctan
(
dy
dx

)
(8)

To express directions, a polar histogram H was constructed, assum-
ing that the direction range from 0◦ to 360◦ is divided into K bins
(predefined with K = 256, �� = 360/K = 1.4◦):

H(�i) = N(�i)
SN

where N(�i) =
∑
p∈�

log(Amp(p)) and SN =
K∑
i=1

N(�i),

� =
{
p|�i − ��

2
��(p) <�i + ��

2

}
(9)

Figs. 7a and b show two examples of the polar histograms H of
contraction and non-contraction cases, respectively. The patterns of
the polar histogram imply that, in contraction cases, the directions
are spread in every direction, whereas in non-contraction cases, the
polar histogram is distributed in only the dominant direction. To
reduce the dimensions of the histogram, and avoid losing impor-
tant information, symmetric directions are combined. The directions
(0–180◦) are then divided into 16bins of a histogram D in a Cartesian
system, as shown in the left panel in Figs. 7a and b. Based on the
signal of the histogram D, a simple K-nearest-neighbors (K-NN) clas-
sifier was used to decide on the contraction pattern. In this learning
model, the structural similarity between two feature vectors Dx and
Dy was estimated by calculating the correlation coefficient corre(x, y)
according to

corre(x, y) = �xy + C
�x�y + C

(10)

where �x and �y are the standard deviations of the feature vectors
Dx and Dy, respectively; �xy is the covariance of vectors and C is a
small constant, to prevent the denominator from being zero. In our
implementations, K-NN classifier trained with a data set including
1000 frames, which had been labeled manually, as non-contraction
or contraction cases. The data set was established so that the number
of contraction cases was equal to the number of non-contraction
cases (500 cases each). Given a query concerning the classification
of a contraction, we found K cases in the training set closest to the
query frames. A decision of whether or not it was a true contraction
was based on the majority vote of the K objects found.

4. Experimental results and discussion

4.1. Experimental results

The experimental data were obtained from volunteers, supported
by the Graduate School of Medicine, Osaka City University, Japan.
Six WCE image sequences were obtained from different positions of
the small bowel. The length of each sequence was 10min. Ground
truth data for each sequence were obtained by manual examination
by the endoscopist experts. The positions of the beginning, end, and
the strongest stage of each contraction cycle were marked. Table 1
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Fig. 7. Direction histogram of a contraction (a) and a non-contraction (b). Left side shows original frames with gradient direction at edge pixels, middle is a polar histogram
and the right side is a Cartesian histogram in 16bins.

Table 1
The data for experiments

Seq. no. Pos. in small bowel (min) # of contractions

Seq_1 35 20
Seq_2 96 30
Seq_3 180 16
Seq_4 98 48
Seq_5 30 46
Seq_6 171 33

shows detailed information on the experimental sequences used for
the evaluations.

According to the proposed method, the procedures for each stage
were set up and implemented by C++ programs. An example demon-
strates the effectiveness of each stage shown Fig. 8. The stages in-
volved: mark possible contractions in Stage 1; remove redundant
information in Stage 2 and; determine true contractions in Stage 3.
To evaluate the performance of the method, the data below were
calculated after each stage:

• The number of true contractions detected (true positives—TP).
• The number of wrong contractions detected (false positives—FP).
• The number of lost contractions (false negatives—FN).

The performances were then evaluated using two criteria:

Sensitivity(Sens) = TP
TP + FN

and

False Alarm Rate(FAR) = FP
TP + FP

(11)

The effectiveness of adapting window sizes along the small bowel
in the Stage 1 was evaluated by comparing this technique with the
results using a fixed window size. The window sizes were assigned
based on WCE transit through the small bowel, as in the procedure

described in Stage 1 (Section 3.1). Detailed data for each sequence
are shown in Table 2.

As shown in Table 2, the FAR values obtained with adaptive
changes in window size were better than those with a fixed window
size, for all sequences. In particular, the yield was significantly re-
duced FAR for Seq_2, Seq_4 and Seq_6. However, with larger window
sizes than those used for the fixed size, the detection of true con-
tractions was reduced for Seq_4 and Seq_6. Contractions were lost
in these cases because concussive contractions appeared only over
a short time period (i.e. a few frames). This was known as a cluster-
ing contraction (in terms of physiology). Because at least one of the
contractions in the cluster was still observable, they did not make
a great impact. Using the results of various window sizes for Stages
2 and 3, the overall performance of the proposed method is shown
in Table 3. The data in column 2 show the results of the proposed
method after Stage 3. Among the contractions detected in ground
truth data, a number of contractions which do not appear in the final
results are shown in the next column.

The above results suggest that contractions were successfully
detected through a combination of temporal and spatial features.
These features were effective for identifying contractions of variable
lengths, instead of just fixed length ones, such as in the studies by
[10] or [13]. This takes account of the natural characteristics of in-
testinal contractions. Moreover, spatial analysis using a statistical
model can adapt to the ambiguous patterns of contractions (such as
in Fig. 1b) rather than assuming a fixed, symmetrical pattern in the
previous works. To compare qualitative indices between previous
studies and the proposed method, although contractions in [10,13]
were determined using different experimental data, average values
for Sens and FAR were used, and are shown in Fig. 9. Note that the
values of the Sens and FAR in Fig. 9 for methods [10,13] were re-
computed from data supported in these studies, to match with the
definitions in (11).

Using the proposed method, contractions could be detected
throughout the full length of the small bowel, as shown in Fig. 10.
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Fig. 8. An illustration of the effectiveness of the method. Possible contractions are marked inside rectangle boxes. The redundant cases are removed after evaluating the
similarity between frames (marked by slanting), and the contractions are recognized as positive cases by using the classification method (marked in square boxes).

Table 2
Results of the stage one with fixed and variable window sizes

Seq. Ground-truth
data

Fixed window sizea Various window sizesb Window
size w

Number of
contraction
found

Number of
contraction
lost

Sens (%) FAR (%) Number of
contraction
found

Number of
contraction
lost

Sens (%) FAR (%)

Seq_1 20 88 1 95 78 88 1 95 78 5
Seq_2 30 76 1 97 62 62 2 93 55 7
Seq_3 16 92 1 94 84 36 3 81 64 11
Seq_4 48 124 1 98 62 57 6 88 26 9
Seq_5 46 109 4 91 61 66 5 89 38 7
Seq_6 33 78 1 97 59 44 4 88 34 11

Average 94 68 89 49

aFix window size: sigma of Gaussian and length of element B (in the Stage 1) are set fixed values along full WCE transit time.
bVarious window size: The configurations as described in Section 3.1 are deployed so that window size w can be adjusted during WCE transit. Correspondence values of

w are shown in next column.

Table 3
Recognition rates of the experimental sequences using the proposed method

Seq. no. Ground-truth
data

Number of
contractions detected

Number of
true contractions lost

Sens (%) FAR (%)

Seq_1 20 48 2 90 63
Seq_2 30 43 4 87 40
Seq_3 16 25 3 81 48
Seq_4 48 45 8 83 11
Seq_5 46 43 12 74 21
Seq_6 33 41 9 73 41

Average 81 37

The contraction signals detected by variable window sizes were
closer with the data detected manually. With window size adjusted
during WCE transit, FAR was significantly reduced compared with
that determined with a fixed window size. The performance of the
proposed method was therefore more robust and reliable.

4.2. Discussions

The computations of the three-stage procedure were performed
off-line on a PC Pentium IV 3.2GHz, 1GB RAM. The average compu-
tation time for six sequences in the experiments was approximately
6min. The longest time (4min) was devoted to edge extraction
in Stage 1. The computation time for Stage 2, approximately 90 s,
was significantly reduced due to the elimination of non-contraction
frames by Stage 1. Once the K-NN was trained in Stage 3, the clas-
sification results were produced in 30 s. In fact that computation
time depended on the WCE transit time in the small bowel re-
gions; e.g. with a data set of 100 patients, 80% small bowel transit
time was approximately 200–250min. With this duration of transit,
the proposed procedures could span from 2 to 2.5h. To get better
performance achievements, a pre-computed edge extractions

(Stage 1) could be done with a back-end PC, and developing par-
allel algorithms within Stages 2 and 3 due to non-dependency
characteristics of the features extractions procedures.

For overall performance, the proposed method still resulted in
a high number of contractions being missed in Seq_5 and Seq_6.
Because of weak contractions (Seq_6), or ambiguous patterns of
the contractions (Seq_5), the directional features of these sequences
were less clear in frames at the distal regions of the small bowel. To
overcome these issues, other features such as changes in the area of
lumen regions, or the shape of the wrinkles could be added to the
learning paradigm at Stage 3. The procedure in Stage 1 to vary the
window size along the small bowel was only based on WCE transit
time and more features such as movement and position of the WCE
could be used to estimate window size. With these improvements,
this method would be able to take account of individual patient's
data.

The detection of contractions throughout a full-length sequence,
as shown in Fig. 10, revealed characteristic motility patterns for
an individual patient. However, data based on a larger group of
patients are required to confirm the results. Patterns could then be
compared between healthy individuals and those with various
diseases, in order to determine differences in intestinal motility
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Fig. 9. Comparison of overall performance between the proposed method and previous methods.

Fig. 10. Estimation number of contractions along GI tract of a full sequence.

characteristics. This could lead to future clinical applications, in
which intestinal motility could be analyzed non-invasively with
minimal attention from physicians.

5. Conclusion

This paper presented a method for the recognition of intestinal
contractions during WCE of the small bowel, based on the efficient
combinations of image features and the physiological properties of
contraction frequencies. Contractions were successfully detected us-
ing a three-stage procedure: In Stage 1, potential contractions were
located within windows including consecutive frames defined by
edge signals. Relevant configurations were established such that the
window sizes varied adaptively during the transit of the WCE. These
features accounted for the characteristic physiological motility pat-
terns. The possible contractions were then evaluated, based on the
similarities between consecutive frames, allowing the negative cases
to be discarded in Stage 2. For a final decision, in Stage 3, the spatial
features of the possible contractions were classified using an edge di-
rection histogram. The experimental results shown that 81% of true
contractions were detected, with a 37% FAR. These experiments also
confirmed that by considering the frequency patterns of the con-
tractions, it was possible to eliminate many non-contraction cases
throughout the WCE transit. Combinations of spatial and temporal
features are therefore suitable, robust approach for the detection
of contractions. The results suggest that this method could provide
a non-invasive means of intestinal motility analysis with requiring
minimal attention from physicians.

Some limitations of the proposed method have also been dis-
cussed, and suggestions for further research have been made. To en-
sure reliable results are obtained with different types of data, other
features need to be included in the classification task. More informa-
tion, such as WCE location and velocity, would allow more precise
adjustment of window size. The development of a parallel algorithm
would reduce the computation time. Examination of a larger sam-
ple of patients and further examination of the results of contraction
detection could lead to valuable clinical applications.

6. Summary

Recognizing intestinal contractions from WCE image sequences
is a non-invasive technique, which provides a solution to the prob-
lems of traditional techniques used for assessing intestinal motility
assessment. Although not originally designed for this purpose, the
image-capturing ability of WCE sequences reflect intestinal activity
during the capsule transit time. These images provide a means of
visualizing intestinal contractions. The aim of this study was to use
computer vision techniques for the automatic detection and quan-
tification of intestinal contractions, so providing physicians with a
tool for assessing intestinal motility.

Based on the characteristics of contractile patterns and
physiological properties relating to contraction frequency, we inves-
tigated image features extractedWCE image sequences, such as num-
ber of edge wrinkles, the similarity between frames, and directional
edge information, to automatically recognize contractions during the
transit of WCE through the small bowel. The method thus combined
both temporal and spatial features. Contractions were detected
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successfully using a three-stage procedure. Firstly, the possible
contractions are recognized by changes in the edge structure of the
intestinal folds (Stage 1) and evaluating similarities features in con-
secutive frames (Stage 2). In order to take account of the properties
of contraction frequency, we consider that the possible contrac-
tions are located within windows including consecutive frames.
The size of these contraction windows is adjusted according to the
passage of the WCE. These procedures aim to exclude as many non-
contractions as possible. True contractions are determined through
spatial analysis of directional information in Stage 3.

Six sequences from different sections of the small bowel were
used. This method detected 81% of the total contractions and the
false alarm rate was 37%. The experimental results confirmed that,
by taking account of the frequency of the contractions, it was possi-
ble to reduce many non-contraction cases. The combination of spa-
tial and temporal features provided a workable, robust method for
detecting contractions, which was both quantitatively and qualita-
tively superior to previous methods. Some limitations of the method
were discussed and further lines of research were suggested. To en-
sure reliable results with different types of data, other features need
to be taken account of in our classification system. Further informa-
tion, such as WCE location and velocity, would provide information
to allow precise adjustment of window size, while the development
of a parallel algorithm would improve performance time. The exam-
ination of data from more patients, as well as further analysis of the
results, could lead to valuable clinical applications.
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